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Abstract

Aspect-oriented programming is an emerging approach in software develop-
ment, which provides new possibilities for separation of concerns. Aspect-
oriented languages offer abstractions for the implementation of concerns
whose modularization cannot be achieved by using traditional programming
languages. Such concerns are generally termed as crosscutting concerns. It is
generally agreed that separating the right concerns from each other enhances
software quality factors such as reusability and adaptability. The separated
concerns in software must be composed together so that software behaves
according to its requirements in a coherent way. We refer to language mecha-
nisms that separate and compose concerns as 'composition mechanisms'. This
thesis evaluates the software composition mechanisms of current aspect-
oriented languages from the perspective of software quality factors such as
evolvability, comprehensibility, predictability and adaptability. Based on this
study, the thesis proposes novel extensions to current aspect-oriented
languages so that programs written in these languages exhibit better quality.

A considerable number of aspect-oriented languages has been introduced for
modularizing crosscutting concerns. Naturally, these languages share a number
of common concepts and have distinctive features as well. For this reason, we
propose a reference model that aims to capture the common and distinctive
concepts of aspect-oriented languages. This reference model provides a basis
to understand the important characteristics of the state-of-the-art AOP
languages and helps us to compare the AOP languages with each other.
Furthermore, it exposes the issues that have to be considered when a new
aspect-oriented language needs to be developed.

In this thesis, we analyse the four main aspect-oriented concepts of the refer-
ence model, namely join point, pointcut, advice and aspect, and identify prob-
lems related to their use in various AOP languages. Based on this analysis, we
propose extensions of the existing concepts and/or design new ones to address
the identified problems.



ABSTRACT
In current aspect-oriented languages, pointcuts select join points of a program
based on lexical information such as explicit names of program elements.
However, this reduces the adaptability of software, since it involves too much
information that is hard-coded, and often implementation-specific. We claim
that this problem can be reduced by referring to program elements through their
semantic properties. A semantic property describes for example the behavior
of a program element or its intended meaning. We formulate requirements for
the proper application of semantic properties in aspect-oriented programming.
We discuss how to use semantic properties for the superimposition of aspects,
and how to apply superimposition to bind semantic properties to program
elements. To achieve this, we propose language constructs that support seman-
tic composition: the ability to compose aspects with the elements of the base
program that satisfy certain semantic properties.

The current advice-pointcut binding constructs of AOP languages maintain
explicit dependencies to advices and aspects. This results in weaving specifi-
cations that are less evolvable and need more maintenance during the develop-
ment of a system. We show that this issue can be addressed by providing asso-
ciative access to advices and aspects instead of using explicit dependencies in
the weaving specification. To this aim, we propose to use a designating (query)
language in advice-pointcut bindings that allows for referring aspect/advices
through their (syntactic and semantic) properties. We also present how seman-
tic properties can be applied to provide reusable (adaptable) aspect abstrac-
tions.

Aspect-oriented languages provide means to superimpose aspectual behavior –
in terms of advices - on a given set of join points. It is possible that not just a
single, but several advices need to execute at the same join point. Such "shared"
join points may give rise to issues such as determining the exact execution
order and the other possible dependencies among the aspects. We present a
detailed analysis of the problem, and identify a set of requirements upon mech-
anisms for composing aspects at shared join points. To address the identified
issues, we propose a general and declarative model for defining constraints
upon the possible compositions of aspects at a shared join point. By using an
extended notion of join points, we show how concrete aspect-oriented
programming languages can adopt the proposed model.
iv



The thesis also presents how the proposed extensions and new constructs are
adopted by the aspect-oriented language Compose*. To evaluate the proposed
constructs, we provide qualitative analyses with respect to various software
engineering properties, such as evolvability, modularity, predictability and
adaptability.
v
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Chapter 1

Introduction

1.1 Synopsis
Aspect-oriented programming is an emerging approach in software develop-
ment, which provides new possibilities for separation of concerns. We adhere
the commonly used definition of concern from IEEE 1471: a concern is an
interest which pertains to the system’s development, its operation or any other
aspects that are critical or otherwise important to one or more stakeholders.
Aspect-oriented languages offer abstractions for the implementation of
concerns whose modularization cannot be achieved by using traditional
programming languages. Such concerns are generally termed as crosscutting
concerns. It is generally agreed that separating the right concerns from each
other enhances software quality factors such as reusability and adaptability.
Obviously, the separated concerns in software must be composed together so
that software behaves according to the requirements in a coherent way. We will
briefly refer to language mechanisms that separate and compose concerns as
the composability features of the language. This thesis evaluates the software
composition mechanisms of current aspect-oriented languages from the
perspective of software quality factors such as evolvability, comprehensibility,
predictability and adaptability. Based on this study, the thesis proposes novel
extensions to current aspect-oriented languages so that programs written in
these languages exhibit better quality.

This chapter is organized as follows: section 1.2 provides background on soft-
ware quality factors and their relevance to the design of programming
languages. Section 1.3 outlines the problem of crosscutting concerns by a
simple example. Sections 1.4 and 1.5 show two possible solutions to modelling



CHAPTER 1 INTRODUCTION
crosscutting concerns are presented: proxy-based and aspect-oriented language
based. This section evaluates these two alternatives. Although aspect-oriented
languages provide better modularization for crosscutting concerns, they may
fall in short in case requirements evolve in unpredictable ways. Section 1.6
elaborates on such composability problems. Section 1.7 summarizes the contri-
butions to overcome these problems and provides an overview about the struc-
ture of this thesis.

1.2 Software Quality Factors
Software developers squarely agree that providing high-quality software is an
important goal. In software engineering, quality can be expressed by so called
’ilities’, such as usability. reliability, adaptability, for instance. (An extensive
set of these ilities is listed (and discussed) in [13], in chapter 19.) These ilities
represent important quality aspects of software. 

Nowadays software is developed by sophisticated tools, environments and
high-level programming languages. The adopted programming language and
the related tools directly affect the quality of software. This thesis evaluates
current aspect-oriented languages with respect to the quality values evolvabil-
ity, comprehensibility, predictability, and adaptability1. After defining these
quality factors, we explain how aspect-oriented languages may impact these
quality factors in practice.

1.2.1 Evolvability
Evolvability is an important software quality factor that indicates the ability of
developing programs incrementally. In general, evolvability facilitates extend-
ing an application towards new requirements mostly by reusing previously
written modules without modifying them.

The inheritance construct adopted by object-oriented languages is an example
of a language construct that contributes positively to evolvability. Inheritance
is basically a composition abstraction that allows for incrementally extending
(and refining) a definition of class with a new one.

1. Of course, one may define many more ilities; we have chosen the above mentioned ilities
because they are related to composition mechanisms of programming languages, which is
our focus of interest.
2



SOFTWARE QUALITY FACTORS
1.2.2 Predictability
Predictability ensures programmers that certain properties are held during the
development and execution of a program. In general, there is a wide range of
features that supports predictability in programming languages. For example,
in Java, if the keyword final is used, the definition of a class cannot be extended
and/or overridden using inheritance. Although this hampers evolvability, it
may positively contribute predictability since a class which is defined as final
cannot be extended and modified in unpredictable ways by its subclasses.
Other language constructs that enhance predictability are for example type and
interface declarations. These language mechanisms obviously require adequate
compiler and/or run-time support.

1.2.3 Comprehensibility
We define comprehensibility as the ability to understand the meaning of a
program by just looking at its source code. Comprehensibility can be influ-
enced by the programming style and the constructs of the adopted language,
such as how the program units are modularized, how the units refer to each
other, and where the references in the units are specified.

For example, if utilized appropriately, the notion of classes in object-oriented
programming enhances comprehensibility of software because classes have
well-defined syntactic structure and provide linguistic constructs for the sepa-
ration of interface from implementation.

1.2.4 Adaptability
Certain language constructs may ease implementing software modules that can
adapt to changing context. (Adaptability is often related to configurability.)
Various language constructs that support parametrization can positively
contribute to the adaptability of programs.

For example, in object-oriented programming languages, the operations that
are offered by a class may be adapted by initializing them with different argu-
ments. Generic types are another example for adapting software. For example,
template classes in C++ enable instantiation of classes with different types of
local variables.
3



CHAPTER 1 INTRODUCTION
1.2.5 Trade-offs and Relations between Software Quality Factors
As indicated in the previous section, the final keyword (i.e. language abstrac-
tion) has influence both on evolvability and predictability. Language
constructs usually contribute to more than just one quality factor. For instance,
as discussed in the previous section, the keyword final has influence both on
evolvability and predictability of programs. Moreover, certain software engi-
neering properties often have ’synonym’ or ’antonym’ type of relationships
with each other. For example, the language constructs that provide better
adaptability often decrease the predictability of the programs, and the other
way around, better predictability can often result in less evolvability of
programs. Also, predictability is often considered as a feature of comprehensi-
bility in [4].

Preferably, the designers of a language should deliberately consider the impact
of introducing a new language construct on software quality factors. Obvi-
ously, this was the case when the keyword final was introduced. The purpose of
final is to provide better predictability by limiting evolvability. However, a
language construct may contribute (both in a negative and positive manner) to
more software quality factors than the ones that were involved in its design.

We therefore claim that the trade-off analysis of various language constructs
from the perspective of multiple software quality factors plays an important
role in evaluating and comparing programming languages with each other

For further discussions on the relation between language mechanisms and soft-
ware quality factors, the interested reader can refer to [4].

1.3 Crosscutting Concerns
Programming languages are the primary means in the implementation phase of
software development processes: they act as a specification language that is
used to describe the concerns of the software system being developed. Many
different programming languages have been introduced in the past. Among
these, the object-oriented languages retain their popularity. In these languages,
the notion of “object” is a primary means to represent concerns. Every object
has an explicit identity with a set of associated operations. Objects may encap-
sulate other objects. The internal structure of an object is abstracted through the
set of operations exposed at its interface. Various publications in the literature
4



CROSSCUTTING CONCERNS
[3, 1] have shown that there are certain concerns that cannot be adequately
represented as a single object. We take the familiar example concern of tracing
of changes of figure elements [3], and show its implementation in Java.
Assume, for instance, that we have two main concerns in the implementation
of the graphical elements shown in Figure 1.1. First concern is to represent the
graphical elements as explicit modules. The second concern is to trace changes
of the coordinate values of the graphical elements.

Figure 1.1 An example crosscutting concern: Tracing

In this figure, classes Figure, FigureElement, Point and Line are program modules
that represent the graphical elements explicitly; thereby, they fulfil the first
concern. Since every graphical element is represented as a class, they can be
reused and extended individually using the inheritance and aggregation mech-
anisms of object-oriented languages. In addition, implementing every graphi-
cal element explicitly as a single language module possibly contributes to the
comprehensibility of the program. Similarly, for the purpose of reusability,
extendibility and comprehensibility, the concern of tracing is implemented by
class Tracer. However, the implementation of this concern is not cleanly sepa-
rated from the implementation of graphical elements. The methods that are
used for setting the coordinate values in graphical elements must somehow
implement part of the tracing functionality; after every set operation, the tracer

FigureElement

+getX()
+getY()
+setX(in x : int)
+setY(in y : int)

Point

+getP1() : Point
+getP2() : Point
+setP1(in p1 : Point)
+setP2(in p2 : Point)

Line

Figure
*

+methodEntry(in signature : String)
+methodExit(in signature : String)

Tracer

Tracing
5



CHAPTER 1 INTRODUCTION
object must be informed accordingly. Here, the implementation of the tracing

concern is in fact scattered over classes Point, Line and Tracer. In classes Point
and Line, the implementation of the graphical concern is also partially tangled
with the implementation of the tracing concern. If a concern is scattered and/or
tangled, it is called a crosscutting concern. Let us now look at this problem in
more detail. As shown in lines 4 and 9 in Listing 1.1, invoking the methods setX
and setY will cause calls on the method methodEntry of trace, which is an
instance of class Tracer. This is used by trace to register that a call is made
either on the method setX or setY. Similarly, in lines 6 and 11, after setting the
x or y value of a point, the method methodExit is called on trace. This will be
used by trace to register that either the x or y value of a point has been set. Here,
the arguments of the calls methodEntry and methodExit are used to pass the
necessary information to trace.

In this listing, parts of the implementation of the concerns “representing the
graphical elements” and “tracing changes of the coordinate values of the graph-
ical elements” are in-lined in the implementation of the methods setX and setY.
This is generally referred to as code-tangling. As a result, class Point partially
implements two concerns at the same time, which should be preferably sepa-
rated. Here, code-tangling in fact occurs in the methods setX and setY of classes
Point and Line, since the implementation of the both concerns are scattered to
multiple classes and methods.

0) class Point extends FigureElement{
1) private int x,y;
2)   ...
3) public setX(int x){
4) trace.methodEntry("Point.setX, x="+x);
5) this.x=x;
6) trace.methodExit("Point.setX");
7) }
8) public setY(int y){
9) trace.methodEntry("Point.setY, y="+y);
10) this.y=y;
11) trace.methodExit("Point.setY");
12) }
13) }

Listing 1.1 Crosscutting Implementation of Tracing
6



A FIRST ATTEMPT: DYNAMIC PROXIES
Unfortunately, not being able to represent crosscutting concerns explicitly may
negatively influence the software quality factors discussed in this chapter. In
the following subsections, by using a state-of-the-art, object-oriented software
development platform, we will investigate various means in implementing the
example shown in Figure 1.1.

1.4 A First Attempt: Dynamic Proxies
It is important to mention that languages such as Java and C# are in fact
supported by tailored software development platforms, which are typically
equipped with virtual machines that control the execution of programs.
Through Application Programming Interfaces (APIs), these platforms may
provide various services such as introspection and dynamic class loading, so
that programs can observe and manipulate their execution context effectively.
In fact, by using these so-called meta services, it is possible to modularize the
crosscutting concerns shown in Figure 1.1. In Listing 1.2, for example, we
illustrate how the tracing can be implemented in a standalone module.

The bold lines of Listing 1.2 are used to indicate the statements related to the
meta-services of the Java programming environment. Here, class Tracing
implements the interface InvocationHandler. Instances of the interface
InvocationHandler are responsible for intercepting and dispatching all method
calls made to a proxy2 regular object. The method invoke(Object proxy, Method
method, Object[] args) of InvocationHandler gets executed whenever a method is
executed on the proxy. The first argument is the proxy instance that has been
invoked, the second argument is the target method, and the third argument

2. A dynamic proxy is a class that implements a list of interfaces, which one specifies at runt-
ime at the time of creation of the proxy. A proxy behaves like any other class that imple-
ments the supplied interfaces.
7
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(args) are the runtime parameters that the caller supplies. This method realizes
the logic of tracing: first, the entry of the method execution is printed. 

In line 12, the original (intercepted) method is executed and its return value is
stored in temporary variable. This value is returned in the next statement. In
lines 17, the exit of the method execution is printed in the finally clause. The
example has been adopted from [2], the reader can find further details about
using these services here.

Although the implementation in Listing 1.2 is able to represent the tracing
concern as a standalone module, it has two important disadvantages. First, the
implementation depends on the API. If the API changes, the implementation
may not work as desired3. Second, in order to understand the listing, the

0) public class Tracing implements InvocationHandler {
1)   protected Object delegate;
2)
3) public Tracing(Object delegate) {
4) this.delegate = delegate;
5) }
6)
7) public Object invoke(Object proxy, Method method, 
8)                         Object[] args) throws Throwable {
9) try {
10)   System.out.println("Entering the method " + method);
11)     /* ... for loop for printing out the args ... */
12)     Object result = method.invoke(delegate, args);
13)     return result;
14) } catch (InvocationTargetException e) {
15)   throw e.getTargetException();
16) } finally {
17) System.out.println("Exiting the method " + method );
18) }
19) }
20)

Listing 1.2 A standalone module (class) in Java that represents Tracing 

3. For backward compatibility, the original methods of an API are always kept in Java, and
marked as deprecated so that new implementation can, but should not use the deprecated
functions.
8
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programmer must have knowledge on the API of the Java environment. This
obviously reduces the comprehensibility of the program.

In Listing 1.3, we will now show how the tracing concern as implemented by
class Tracing in Listing 1.2 can be composed with the implementation of the
graphical element Point. First, the class Point has to be ’prepared’ for the pres-
ence of proxy classes. For this reason, an interface (IPoint) is created that
contains the signature of every method that can be intercepted by a proxy (see
lines 0 to 2). In addition, we need to indicate that class Point implements the
interface IPoint (line 5) and declare the exception clause to every method where
it is necessary (see for example line 7).The program shown in Listing 1.3 works
as follows: first, an   instance of IPoint created by the instantiation of the class
Point. In line 18, we create an instance Tracing, which is referred to as an
instance of InvocationHandler. In line 21, we create a proxy instance of Point and
pass in the previously instantiated invocation handler. Finally, we test the
proxy instance by calling their method setX on it in line 26.

The implementation shown in Listing 1.3 has two drawbacks. First, in order to
compose the tracing concern as implemented in Listing 1.2, the implementa-
tion of class Point must be modified considerably. This means that the tracing
concern cannot be added to class Point in an incremental way. Second, the
solution given in this section requires the availability of the source code of
class Point If the source is not available, the same modifications could be also
performed on the bytecode level with the help of a proper tool support. Obvi-
ously, if the tracing requirement was anticipated before, the implementation of
class Point could be prepared accordingly. Unfortunately in reality, not all
(future) requirements can be anticipated. These problems get amplified when
the other graphical elements are considered as well. This means that for each
class which implements a graphical element, a generic interface (lines 0-2 in
Listing 1.3) and a binding specification (lines 14-25 in Listing 1.3) must be
added. For this purpose, the approach by using dynamic proxies is not consid-
ered satisfactory. In general, programming languages can solve the above
mentioned problems by providing one or more language constructs to support
the proper modularization of concerns. In fact, aspect-oriented programming
languages (AOPs) have been developed to model crosscutting concerns explic-
itly.
9
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In the following section, by the help of the aspect-oriented language AspectJ4

[7], we give a brief introduction to the main concepts of AOP languages. For
this purpose, the example problem introduced in Figure 1.1 is used. 

0) public interface IPoint {
1)   public void setX(int x) throws Exception;
2)   ...
3) }
4)
5) public class Point extends FigureElement implements IPoint {
6) ...
7) public void setX(int x) throws Exception {
8) this.x=x;
9) }
10) }
11)
12) public class Test{
13) public static void main(String argv[]){
14) // Create an instance of Point
15) IPoint pi = new Point();
16)
17) // Create InvokeHandler for Tracing
18) InvocationHandler handler = new Tracing(pi);
19)
20)       //Create a dynamic proxy and pass in Tracing.
21) IPoint p =
22) (Point) Proxy.newProxyInstance(
23) pi.getClass().getClassLoader(),
24) pi.getClass().getInterfaces(),
25) handler);
26) p.setX(5);
27) }
28) }

Listing 1.3 Applying Tracing on Point

4. To be precise, AspectJ is an aspect-oriented language extension to Java.
10
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1.5 A Short Introduction to Aspect-Oriented Languages
This section gives a short introduction to the essential concepts of aspect-
oriented languages for the novice reader. We discuss the most important
abstractions based on the source code of the example presented in Listing 1.4.

To represent crosscutting concerns as separate modules, AspectJ introduces a
novel language construct called aspect. Aspects, like ordinary Java classes, can
be defined using methods, fields and static initializators. In addition to these,
pointcut and advice are the two additional language constructs that are specif-
ically introduced to define aspects. A pointcut is used to designate certain
events in the execution of a program. These events are called join points.
Although the definition of join points may differ from one language to another,
the events like passing a message, reading a field value of an object, raising an
exception are typically considered as join points. Consider, for example lines
1, 2 and 3 of Listing 1.4, which declares the pointcut stateChanges that is used
to designate call events on the methods setX and setY of class Point. Advices
represent the crosscutting code that is executed at the designated join points. In
AspectJ, there are three types of advices: before, after and around5. Given a
sequence of events, a before advice is executed just before the execution of its

0) public aspect Tracing{
1) pointcut stateChanges(): 
2) call(void Point.setX(int)) ||
3) call(void Point.setY(int));
4)
5) Object around(): stateChanges(){
6) String m_name = 
7) thisJoinPoint.getSignature().getName();
8)
9) System.out.println("Entering the method " + m_name);
10) Object temp = proceed();
11) System.out.println("Exiting the method " + m_name);
12)
13) return temp;
14) }
15) }

Listing 1.4 Implementation of the crosscutting concern tracing in AspectJ

5. There are two additional after advices: after returning and after throwing. We will discuss
these in Chapter 2.
11
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designated join point. As the name implies, the after advice is executed just
after the termination of its designated join point. An around advice is executed
instead of its designated join point. In Listing 1.4, between lines 5 and 14, an
around advise is defined. In line 5, the term Object indicates that the execution
of this advice will return an instance of type Object. This advice is bound to the
join point stateChange, which is defined between lines 1 and 3. This means that
the code of this advice is executed when the methods setX or setY of class Point
are called. In AOP terminology, class Point is called as a base class. In line 7,
the pseudo variable thisJoinPoint is used to denote an object which represents
the designated join point. This object provides reflective information about the
join point. By calling subsequently on the methods getSignature and getName of
this object, it is possible to obtain the name of the method which has been
called. The name of the method is then printed using the statement in line 9. In
AspectJ, the keyword proceed in line 10 is used to execute the designated join
point, which is either calling on setX or setY in this case. The result of this
execution is kept in the variable temp of type Object. In line 11, it is reported
that the execution of the called method has been completed. Finally, in line 13,
the value stored in temp is returned as a result of the execution.

There are three observable differences between the two implementations given
in Listing 1.2 and Listing 1.4. First, the AspectJ implementation is shorter and
easier to comprehend. But most importantly, in the AspectJ implementation,
the tracing concern can be composed with the methods setX and setY of class
Point without preparing class Point for this purpose. It is therefore claimed that
in the implementation of such crosscutting concerns, the AOP languages
provide true incremental composition. Finally, although not illustrated here
explicitly, the aspect specification shown in Listing 1.4 can be easily extended
to designate any graphical element class. 

1.6 Problem Statement
In the previous sections, we have discussed various language constructs that
can be used to effectively express the separation and composition of program
modules that would otherwise crosscut each other in case non-aspect oriented
languages would have been used. Aspect-oriented languages adopt various and
different composition possibilities. Through this diversity6, each languages
may emphasize certain software quality factors. Programs written in different
12
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aspect-oriented languages, may therefore, display different quality factors even
though they implement the same behavior.

The goal of this thesis is to enhance the current composition mechanisms of
aspect-oriented languages and if necessary introduce new ones so that the
programs written using these new composition mechanisms will manifest
better software qualities, in terms of evolvability, comprehensibility, predicta-
bility and adaptability. The problems of composition mechanisms of current
aspect-oriented languages are termed as: fragility of pointcuts, tightly coupled
advice-pointcut bindings and aspect composition at shared join points, which
will be briefly summarized in the following sections.

Fragility of Pointcuts

The process of software development generally consists of refinement of
conceptual knowledge towards an executable program. During this process,
“ideas” or design artifacts are mapped onto implementation artifacts. Typi-
cally, the actual implementation contains the artifacts that are necessary for
execution. Consequently, certain conceptual knowledge that expresses the
intentions of a design may not be explicitly represented in the final program.
This information-loss has an important consequence on the pointcut expres-
sions of aspect-oriented languages. Although design information is not neces-
sary for correct execution, it is generally required within pointcut expressions
to avoid fragility of pointcuts with respect to changes in the implementation.
The lack of explicit design information in the implementation forces program-
mers to refer to the design information in other ways, for example, based on
lexical information and syntactic conventions. However, this restricts the
adaptability and evolvability of pointcut expressions, i.e. pointcuts may not
designate the intended join points anymore as the source evolves, since it
involves too much information that is hard-coded, and often implementation-
specific.

6. In Chapter 2, we describe a reference model of aspect-oriented languages and discuss in de-
tail the aspect-oriented abstractions that we mentioned in the previous section.
13



CHAPTER 1 INTRODUCTION
Tightly Coupled Advice-Pointcut Bindings

In most aspect-oriented languages, the language constructs for expressing
aspects, advices and pointcut specifications are tightly coupled with each other.
By tight coupling we mean that these constructs either cannot be syntactically
separated from each other or they maintain explicit references to each other.
These issues may restrict the evolvability of the weaving specifications, result
in code that requires intensive maintenance during the development of a
system. 

Aspect Composition at Shared Join Points

Aspect-oriented languages provide means to superimpose [6] crosscutting
code (advice) on a given set of join points. It is possible that not just a single,
but several advices need to be superimposed on the same join point. Such
"shared" join points may give rise to issues such as determining the exact
execution order and other dependencies among the aspects. A typical depend-
ency, for instance, is the conditional execution of the advices of different
aspects. In general, AOP languages lack abstractions to explicitly express such
a dependency; programmers need to use workarounds and extra maintenance
code to express the conditional execution among advices. As a result, aspects
are tangled with extra behavior besides their intended behavior. Moreover,
inappropriate realizations of conditional execution may introduce unwanted
couplings between aspects. This renders difficulties in the reuse of aspects. To
overcome these problems, explicit language constructs are necessary for the
specification of the conditional executions of advices at shared join points.
14



OUTLINE OF THE THESIS AND THE APPROACH
1.7 Outline of the Thesis and the Approach
Figure 1.2 illustrates the structure of the thesis and the relations among the
chapters.

Figure 1.2 Thesis map

This thesis consists of the following chapters:

Chapter 2 introduces a reference model, which provides an overview of the
state-of-the-art aspect-oriented languages. Furthermore, it exposes the
common and distinctive language constructs of these languages within the
perspective of different quality dimensions, such as expressiveness and
composability. These language constructs are further elaborated in chapter 3, 4
and 5.

Chapter 3 presents an in-depth analysis of the role of design information
within the context of aspect-oriented programming. In this chapter, to cope
with the fragility of pointcuts problem, we propose new language contracts to
incorporate the relevant design information in the specification of pointcut
expressions. This is achieved by introducing an explicit language construct that
captures the necessary design information and is used to designate the join
points. This creates more evolvable programs compared to the purely lexical
join point designators.   
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Design information can be associated with program elements at least in 3 ways:

– Manually using annotations
– Automatic derivation based on the existence of other design informa-

tion
– Through introduction of (possibly crosscutting) annotations:

The main advantage of our approach is the increased evolvability of programs
through the reduced syntactic dependency between aspect modules and the
structure of the programs. This chapter is based on work published in [8, 12].

Chapter 4 addresses the tightly coupled advice-pointcut bindings problem. For
this purpose, first the key properties of the current advice-pointcut binding
mechanisms in the state-of-the-art aspect-oriented programming languages are
studied. Based on this study, a new advice-pointcut mechanism is introduced,
which provides associative access to advices/aspects. By this way, advices/
aspects can be designated using their properties or relationships to other units,
instead of explicit names. This makes advice-pointcut bindings more evolva-
ble, since advices and aspects are bound through their properties but not
through syntactic names. This chapter is based on work published in [11], [12]
and [5]. 

Chapter 5 addresses the aspect composition at shared join points problem.
First, an extensive analysis is presented on the issues that arise when multiple
advices have to be executed at the same join point. Based on this analysis, a set
of requirements are identified for the safe and flexible composition of aspects
at shared join points. As a solution, a constraint-based language is proposed,
which allows partial specification of the composition constraints per aspect.
This language can express orderings and various types of conditional execution
of advices, at shared join points. In addition, conditions on the presence and/or
absence of a given aspect can be defined. The system automatically checks all
the independently specified constraints per shared join point and verifies and
enforces them accordingly. It is also illustrated how this language can be
adopted by the aspect-oriented languages AspectJ and Compose*. This chapter
is based on work published in [9, 10].
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Chapter 2

A Reference Model of

Aspect-Oriented Languages

2.1 Introduction
During the last decade, a considerable number of aspect-oriented programming
(AOP) languages has been introduced. In this chapter, we propose a reference
model which aims to represent the common and distinctive features of AOP
languages. This reference model can serve at least for three purposes. First, it
provides a basis for the readers to understand the important characteristics of
the state-of-the-art AOP languages. Second, it helps us to compare the AOP
languages with each other. Third, it exposes the issues that have to be consid-
ered when a new AOP language needs to be developed. Obviously, the refer-
ence model is derived from the current aspect-oriented languages1 and has to
be reconsidered when new languages become available.

The rest of this chapter is organized as follows: in section 2.2, we discuss
shortly the fundamental language concepts of aspect-oriented languages.
Section 2.3 explains the design dimensions that we use to explore the design
space of the aspect-oriented language concepts. In sections 2.4 and 2.7, we
analyse the main language concepts in various aspect-oriented languages, and
build up a reference model of these aspect-oriented languages in the view of

1. It is important to mention that we could not take every aspect-oriented language into account
when we created this reference model. Languages that were part of this study were primarily
those languages that were studied in the language surveys of [12].
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the introduced design dimension. In the view of our reference model, section
2.8 discusses two special aspect-oriented languages, DemeterJ and HyperJ.
Section 2.9 explains the concepts of Composition Filters [8] and discusses the
language constructs of Compose* that is the realization of the Composition
Filters model. Finally, sections 2.10 and 2.11 provide discussion and back-
ground on related work.

2.2 The Fundamental Concepts of AOP Languages
To illustrate the fundamental concepts of AOP languages, we refer to Listing
2.1, which was introduced in Chapter 1.

2.2.1 Join Point
The notion of join point is a fundamental concept in AOP. Join points can be
classified as structural and behavioral join points. Behavioral join points
correspond to events in the control flow of a program. For instance, in object-
oriented languages, behavioral join points may refer to passing messages and
writing on instance variables. In the code (i.e. physical representation) of the
program, there are statements that correspond to these events. For instance, a
call statement corresponds to the message passing event, an assignment state-
ment corresponds to writing an instance variable, etc. A statement in the code

0) public aspect Tracing{
1) pointcut stateChanges(): 
2) call(void Point.setX(int)) ||
3) call(void Point.setY(int));
4)
5) Object around(): stateChanges(){
6) String m_name = 
7) thisJoinPoint.getSignature().getName();
8)
9) System.out.println("Entering the method " + m_name);
10) Object temp = proceed();
11) System.out.println("Exiting the method " + m_name);
12)
13) return temp;
14) }
15) }

Listing 2.1 An example of an aspect in AspectJ
20
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that corresponds to a behavioral join point in the execution is called shadow
point in the aspect-oriented literature.

Structural join points are expressed in terms of the syntactic constructs of the
programming language. For example, a structural join point may correspond to
a particular class in a program. Structural join points will be discussed in detail
in section 2.4.1.

As an example for behavioral join point, consider now line 7, in Listing 2.1.
Here, the pseudo variable thisJoinPoint is an instance of org.aspectj.lang.JoinPoint
and represents the join point context at the moment of execution. In most AOP
languages, structural join points are implicit for the programmers, whereas
behavioral join points are explicitly represented by keywords (or other
language constructs).

Naturally, the set of possible join points (i.e. the types of join points) depends
on the characteristics of the adopted programming language. This means, for
example, that an object-oriented language and a procedural language expose
different types of joinpoints. On the other hand, there may be join point types
that share similar properties in these languages. We will continue the discus-
sion on join points in section 2.4.

2.2.2 Pointcut
Pointcut designator is an expression that refers to zero or more join points.
Pointcut designators are formulated, typically, using a declarative language for
describing the join points where the behaviour of a crosscutting concern (i.e.
advice) is executed. In this thesis, the term "pointcut designator expression"
will be sometimes abbreviated as "pointcut expression" or simply as "point-
cut". Also the term "superimposition" will be used. A pointcut expression is in
fact a quantification mechanism over the events and/or syntax of a program. 

As an example of a quantification over behavioral join points, consider the
pointcut stateChanges in Listing 2.1 (lines 1-3). Here, stateChanges designates
two join points that correspond to the calling events on the methods setX or setY
of the instances of class Point.
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A pointcut expression consists of either  primitive pointcuts or composite point-
cuts. A composite pointcut expression may be built up from primitive and/or
composite pointcuts with the help of composition operators. As an example of
a composition operator, consider the characters "||" in Listing 2.1 (line 2). This
operator indicates that the pointcut stateChanges either matches a call event on
setX or setY.

To cope with the variability in the selected events, a pointcut expression may
be parameterized with the properties of the designated join points. For exam-
ple, the pointcut call(public * Point.*(int)) designates every calling event on the
public methods of the instances of class Point, in which every call has an integer
parameter and returns an instance of unspecified type.  Pointcuts will be
discussed in detail in section 2.5.

2.2.3 Advice
An advice represents a program module which is to be executed at the desig-
nated join points. There are three types of advices before, after and around,
which correspond to the program modules to be executed prior, after or instead
of the designated events, respectively. An advice is bound to zero or more join
points through the use of a pointcut expression. For example in Listing 2.1, the
around advice specified in lines 5-14, is bound to the joint point (calling events
on setX or setY), through the pointcut stateChanges.

In contrast to the methods of traditional object-oriented languages, advices are
not called explicitly. Instead, the execution of an advice is automatically "trig-
gered" when the control flow reaches the join point that is designated. In the
literature [17], this property is termed as "advice is oblivious to the join point".
Consequently, the program modules, in which the events in their control-flow
are designated, are also oblivious to the corresponding advices. We discuss the
advice abstraction in detail in section 2.6.

2.2.4 Aspects
An aspect represents a program module which abstracts advices and pointcut
specifications. An aspect may also incorporate member variables, methods,
etc. In contrast to object-oriented languages, mostly aspects are instantiated
implicitly by the adopted implementation technique. The programmer,
however, may have a choice among various instantiation alternatives. For
22
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example, the programmer may indicate that there should be only a single
instance of a given aspect (singleton aspect). Or, the programmer may want to
create multiple instances of a given aspect. An aspect instance can be shared
by the objects that are designated by the pointcut expression of the aspect. In
case of a single aspect instantiation, all designated objects share a single aspect
instance. In case of multiple instances, each designated object share only its
own aspect instance. We will discuss various concepts of aspects in section 2.7.

2.3 Design Dimensions and Design Alternatives
In this section, we will introduce the dimensions and alternatives of the aspect-
oriented language concepts, which will help us to explore the design space that
the current languages span. In the following sections, for simplicity, we will
use the terms dimensions and alternatives for design dimensions and design
alternatives, respectively.

Dimension of Semantics
In this section, we will elaborate on the expressiveness of the various aspect-
oriented language concepts as adopted by the current languages. Of course, not
all the languages adopt the same language concept in the same way. Moreover,
some language concepts can be specific to a certain language. For example,
only AspectJ and AspectWerkz offer the pointcut handler() to refer to an excep-
tion handling event.

Dimension of Notation
This section discusses the commonly adopted notations. Naturally, there are
similarities and differences in the notations used. For example, AspectWerkz
and JBossAOP use the Java method notation for representing advices. AspectJ
and JAsCo, for instance, use a dedicated notation for representing advices.

Dimension of Composition
Here, we explore the specific composition mechanisms offered by aspect-
oriented languages. For example, languages differ from each other in the way
how advices and pointcut expressions are composed together.Also, some
languages, for instance, adopt a dedicated notation to order the advices that are
superimposed on the same join point.
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Figure 2.1 The complete map of design dimensions - side (a)

AOP Lan
Conce

Aspect

Dim. of Semantics
AI: Aspect Instantiation

AI.IMP: Implicit

per VM (singleton)

per object

per thread

per method

per join point

per control flow

AI.EXP: Explicit

AD:  Aspect Deployment

AP:  Aspect Parametrization

Dim. of NotationCLA: Classes as Aspects

DUA: Dedicated Units as Aspects

Dim. of Composition
AI: Aspect Inheritance

AP: Aspectual Polymorphism

AAC:  Aspect-Aspect Comp.

Pointcut

Dim. of Semantics

PBP: Proberty-based Pointcut

PBP.EM:  Event-Matching

method/constructor call
(message passing and reception)

method/construction execution

message request

destructor execution

handler execution

staticinitizaliztion/ 
preinitialization /initialization

field read/write

block execution

if/switch statement execution

for/while loop execution

advice execution

PBP.CM:  Context Matching

context object (this)

target object

arguments

return object of a call

field/method in the jp

PBP.SM:  Structural Join Point Matching

SP: Scoping Pointcuts

SP.LS: Lexical Scopingwithin

SP.CFS: Control and Data-flow Scoping

withincode

cflow, cflow-below

dflow

DC: Dynamic Condition

PRP:  Protocol-based Pointcuts

Dim. of NotationPD: Pointcut Declaration

Dim. of Composition

PPC: Pointcut-Pointcut Composition

PPC.CO: Composition Operators

PPC.PP: Parametrizable Pointcuts

PPC.EP: Embedded Pointcuts

PPC.UN: Unification

PPC.RB: Rule-Based Pointcuts

PAC: Pointcut-Advice Composition

PAC.DAB: Direct 
Advice Binding

PAC.DAB.ABS: Abstract 
Pointcut-Advice Binding

PAC.SBS: Separate Binding Specification
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Figure 2.2 The complete map of design dimensions - side (b)
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2.3.1 A Graphical Notation for Representing Dimensions and Alterna-
tives
For each language concept, we use a graphical notation for depicting the rele-
vant dimensions and alternatives. Consider for example, Figure 2.3. Here the
root element on the left hand side of the picture represents the language concept
to be analyzed, which is advice in this case.The branches directly connected to
this root element depict the dimensions and design alternatives of the language
concept. These are derived from the fundamental dimensions introduced in the
previous section. The design alternatives for a given branch are indicated by
rounded rectangles connected to the same branch. For example, in Figure 2.3,
there are two design alternatives (Behavioral Advice and Structural Advice) on
the branch that represents the dimension of semantics. A design alternative
may have its alternatives as well. In Figure 2.3, for instance, Generic Advice is
presented as an alternative of Behavioral Advice. The dimensions can be
further specialized in sub-dimensions. In contrast to the alternatives, sub-
dimensions are not necessarily exclusive. For example in Figure 2.3, the sub-
branches form and specialization are sub-dimensions of the dimension of nota-
tion. We use abbreviations in the name of design alternatives (e.g. BA: Behav-
ioral Advice) to indicate the correspondence of alternatives between the figures
and the sections of this chapter.

Figure 2.3  An illustration of the graphical notation that is used in the analysis 
of the language concept advice.
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JOIN POINTS
A detailed map of the design dimensions of each language concept can be
found on pages 24 and 25. We discuss in detail these concepts in the next
sections. 

2.4 Join Points
Figure 2.4 illustrates the dimensions and alternatives of the language concept
joint point. In the following subsections, we will discuss this figure in detail. 

Figure 2.4 The join point abstraction

2.4.1 Dimension of Semantics
As we discussed in section 2.2.1, two main categories of join points can be
distinguished from the perspective of semantics: behavioral and structural join
points.
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Behavioral Join Points (BJP)
In general, behavioral join points are particular events in the execution of an
application. We distinguish two main categories of behavioral join points:
event-based join points and state-based join points.

Event-based join point (BJP.EB)
Event based join points depend on the characteristics of the base language. For
example, the following table lists the commonly used event-based join points
in case the base language is object-oriented.

The first four types of join points in this table are supported by most aspect-
oriented languages, which adopt an object-oriented base language. There are
also join points that are more language-specific: the initalizations in Java, the

Table 2.2 Event-based join points

Join Point Representative Languages

method/constructor execution (default)

method/constructor call 
(aka. message passing or reception)

AspectJ [23], JAsCo[33], CARMA[12] , 
AspectC++ [32], AspectWerkz [10], 
JBossAOP[15]

exception handler execution AspectWerkz, AspectJ, JBossAOP, JAsCo

field read/write AspectJ, AspectWerkz, JBossAOP, CARMA

message receive Compose*

destructor execution AspectC++

(static/pre) initialization AspectJ, AspectWerkz

block execution AspectS

if/switch statement execution Eos-T[31]

for/while loop execution Eos-T

evaluation of arithmethic expres-
sions 

Fradet et. al. [18]

advice execution AspectJ
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destructor execution in C++, and the code block execution in Smalltalk belong
to this set. 

The join points message passing and message reception are needed to be distin-
guished only in the languages that cannot distinguish between the caller and the
callee objects of a message passing. In other words, in those languages, there
is only one instance variable that refers to either the caller or callee, depending
on the type of the join point. When the language is capable of referring to both
the caller and calle objects, a single method call join point can express both
message passing and message reception. For instance, AspectJ can refer to the
caller and callee objects by the pointcuts this() and target(), respectively. The
combination of the pointcuts this() && call() can express message passing,
whereas the combination of call() && target() can express message reception2. In
Compose*, the so-called composition filters are used to define crosscutting
behaviour. The filters are classified as input and output filters. The input filters
affect the incoming calls, whereas the output filters affect the outgoing calls.
Within the context of the input and output filters, the pseudo variable inner
refers to the callee and caller objects, respectively.

We consider the message reception and the message request (e.g. in
Compose*) as different kinds of join points: in case of message request, the
message is not dispatched to the corresponding target object and method yet,
whereas in case of method reception these properties are already determined.

The join points offered by aspect-oriented languages are of course not limited
by the examples presented here. For example, Eos-T, which is an aspect-
oriented extension of C#, provides join points for control statements and loops.
In [18], Fradet et. al. proposed a pointcut to designate the evaulation of arith-
metic expressions as join points. AspectJ also provides another interesting type
of join point for the execution of advices. 

State-based Joints (BJP.SB)
In general, a state-based join point is defined by a state transition in the execu-
tion of a program. Languages that support state-based join points defines the

2. The earlier versions of AspectJ had both the pointcuts call() and reception(). In version
1.0alpha1, these pointcuts were merged and the pointcuts this() and target() were introduced
to make the pointcut language simpler without giving up its expression power.
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aspectual states [5] that crosscut other concerns as explicit program elements.
This provides a better modularization technique for crosscutting concerns that
require state monitoring. Defining expressive state-based join points is an
active research area [5, 11, 36].

Structural Join Points (SJP)
Structural join points are based on the syntax of the base language. Depending
on the syntax of the adopted base language, packages/namespaces, classes,
interfaces, methods, fields, structs and unions (in C++) are typically used as
structural join points.

Structural join points are particularly useful in modifying the structure of
programs. For example, in AspectJ the keyword declare parents can be used to
replace the superclass of a class with another, or it can be used to extend the
interface of a class. We will discuss these possibilities in more detail in section
2.6.1.

2.4.2 Dimension of Notation

Join Point Types (JPT) and Instances (JPI)
AOP languages adopt two alternative ways to denote the current behavioural
join point in execution: through (i) pre-defined types, or (ii) queries. Some
practical examples of pre-defined types and the corresponding languages are
given in the following list:

a. org.aspectj.lang.JoinPoint -- AspectJ
b. org.codehaus.aspectwerkz.joinpoint.JoinPoint -- AspectWerkz
c. org.jboss.aop.Invocation and its subclasses --JBoss
d. jasco.runtime.MethodJoinpoint --Jasco
e. Composestar.Runtime.FLIRT.message.ReifiedMessage --C*3

The instances of these types represent "the current join point in execution".
These instances generally serve two purposes: to obtain reflective information
about the join point and to provide some control over the execution. As an
instance name, typically the pseudo variable thisJoinPoint is adopted; we have

3. Compose*
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already shown the use of this pseudo variable in AspectJ in Listing 2.1. Instead
of using a pseudo variable, in some languages, information about the current
join point is passed as an argument to the corresponding advice. Consider, for
example, the AspectWerkz code shown in Listing 2.3. Here, the method log
(line 4-13) represents the advice that prints a message before and after the
corresponding method is executed. In line 4, information about the current join
point is passed as an argument. To transfer the thread of execution from the
aspect code to the base code, in line 9, the operation proceed is invoked on the
variable joinPoint. In AspectJ, the operation proceed is provided as a language
keyword, instead. (The pointcuts are specified in another place, we will discuss
this in detail in the following section) 

Join point types can also be classified as generic (JPT.GJP) and dedicated join
point types. AspectJ and AspectWerkz, for example, adopt generic join point
types such that all sorts of join points are represented by a single join point
type. In addition, for performance reasons, static join points (JPT.SJP) are
introduced to retrieve only static information about the current joint in execu-
tion. Examples of languages which adopt dedicated join point (JPT.EJP) types
are JBoss, JasCo and Compose*. Each different sort of join point defines its
own dedicated join point type. For instance, in JBoss, each dedicated join point
type is a subclass is the generic join point type. CARMA is an example of
languages that adopt a query mechanism instead of join point types. Typically,
these languages use context matching pointcut designators to retrieve informa-

0) import org.codehaus.aspectwerkz.joinpoint.JoinPoint;
1)
2) public class TracingAspect {
3)
4)  public void log(JoinPoint joinPoint) {
5)  String m_name = 
6) joinPoint.getSignature().getName();
7)
8) System.out.println("Entering the method " + m_name);
9) Object temp = joinPoint.proceed();
10) System.out.println("Exiting the method " + m_name);
11)
12) return temp;    
13) }
14) }

Listing 2.3 An example of using a join point instance in AspectWerkz
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tion about the current join point in execution4. We will discuss elaborate on
these pointcut designators in section 2.5.1.

2.5 Pointcuts
Figure 2.5 illustrates the dimensions and alternatives of the language concept
pointcut.We iterate over these dimensions and discuss them in detail in the
subsequent sections.

Figure 2.5 The pointcut concept

4. However, languages that support join point types, e.g. AspectJ, typically provide context
matching pointcuts as well.
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2.5.1 Dimension of Semantics
There are two main groups of pointcut designators: property-based pointcuts
and scoping pointcuts. Property-based pointcut describes a set of join points by
referring to the properties of join points, such as return type, name and param-
eters of a call, for instance. Scoping pointcuts accept structural or behavioral
join points as a parameter and designate the join points that relate to the param-
eter according to its definition. This can be static reference such as the corre-
sponding lexical unit, or a dynamic reference such as the related control-flow.

Property-based Pointcuts (PBP)
Property-based pointcuts can be classified as event matching and context
matching poincuts5.

Event Matching (PBP.EM)  In current AOP languages, event matching point-
cuts refer to the events which correspond to the adopted join points. The
following table contains the pointcut designators that correspond to the join
points that we have listed in section 2.4.16: 

5. Colyer categorized the pointcut designators of AspectJ with a subset of these categories in
[13] 

Table 2.4 Event matching pointcuts

Example

Pointcut Language Designator

method/constructor call AspectJ call()

message request Compose* {filterelement} in inputfilter

method/constructor execution AspectJ execution()

destructor execution AspectC++ destructor()

exception handler execution AspectWerkz handler()

(static/pre) initialization AspectJ (static/pre)initialization()

field read/write AspectJ get()/set()

block execution CARMA blockExecution()

if/switch statement execution Eos-T conditional()
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Context matching (PBP.CM) Context matching pointcut designators can have
two roles: (1) provide information about the context of the join point for a more
fine-grained designation; (2) expose the context of a join point in terms of first
class entities that are passed to the advices to which the pointcut is bound. List-
ing 2.5 and Listing 2.6 present two examples to illustrate these roles.

In these two AspectJ examples, the pointcut designators denote exactly the

same joinpoints. The pointcut designator in line 2 of Listing 2.5, specifies the
pointcuts with the following features: a method call which starts with the prefix
'set', has a public visibility, a void return type, and have an arbitrary number of
parameters of arbitrary types. The pointcut designator in line 2 is composed
with the pointcut designator of line 3 using the "&&" (and) operator. In line 3,
the context matching pointcut designator this refers to the instances of class
Employee. The method calls as described in line 2, therefore, have to be made
on the instances of class Employee.

6. Note that the pointcut designators in the column Example are listed for representative pur-
poses, the given pointcut may also be supported by more languages. E.g. the designation of
method execution is supported by AspectWerkz, JBossAOP, JAsCo, AspectC++, CARMA
and other AOP languages that were not included in this study.

for/while loop execution Eos-T iteration()

evaluation of arithmethic expres-
sions 

Fradet et. al. 
[18]

DOMAIN () IN()

advice execution AspectJ adviceexecution()

0) /* Case 1: fine-grained designation */
1) pointcut example1(): 
2)    call (public void set*(..)) 
3)          && this(Employee);
4)
5) after(Employee ee): example1(){
6)   String name = 
7)        ((Employee)thisJoinPoint.getThis()).getName(); 
8) }

Listing 2.5 Using context matching pointcut designators

Table 2.4 Event matching pointcuts
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There is a slight difference between the line 3 of Listing 2.5 and line 3 of List-
ing 2.6. In Listing 2.5, the expression "this(Employee)" is used, whereas in List-
ing 2.6, the pointcut is specified with a parameter (Employee e), and this param-
eter is bound in the designator this() - i.e. it is written as this(e). To illustrate the
differences, we will now refer to Listing 2.5 and Listing 2.6.

Line 3 of Listing 2.6 declares an after-advice with the parameter ee of class
Employee. This after-advice is coupled with the pointcut example2 and the
parameter ee of the advice is passed as an argument to the pointcut. The effect
of this program is as follows: when the joinpoint is selected, the call must have
been originated from an instance of class Employee, whose identity is denoted
by the context matching pointcut this(e) and is passed as a parameter to the
advice. In line 3 of Listing 2.6, the identity is used to retrieve the name of the
corresponding employee.

Now we will compare the Listings of 2.5 and 2.6 with each other. Both
programs print the name of the calling objects. In Listing 2.5, the identity of the
calling object is obtained through the pseudo variable thisJoinPoint, whereas in
Listing 2.6, the identity is obtained from the context of the joinpoint. The code
in Listing 2.6 is considered as a more type-safe solution for the following
reason. In Listing 2.5, line 7, the operation getThis() returns an instance of class
Object. Therefore, the returned object must be explicitly linked to class
Employee using type-casting in implementation. In the context exposure point-
cut implementation of Listing 2.6, this relation is explicitly specified without a
need to have type-casting. Table 2.7 contains the most well-known context
matching pointcut designators from various AOP languages

0) /* Case 2: passing context information */
1) pointcut example2(Employee e):
2)    call (public void set*(..)) 
3)          && this(e);
4)
5) after(Employee ee): example2(ee){
6)    String name = ee.getName(); 
7) }

Listing 2.6 Passing context information as parameters
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According to the instances of their arguments, the pointcut designators this()

and target() in AspectJ denote to the join points in the currently executing objec-
tor in the callee object, respectively. For instance, call(public void set*(..)) &&
target(Employee) denote to the calls starting with the prefix 'set' on the instances
of class Employee, independent of which object makes the call. The primitive
pointcut args() can be used to refine or expose the argument of a call. For
instance, consider the following pointcut specification: pointcut exposeIntArg(int
i): call(public void set*(..)) && args(i); This pointcut denotes to the calls starting
with the prefix 'set' and have an int parameter. The variable i can be accessed
from the advice which is associated with this pointcut specification.

Table 2.7 Context matching pointcuts

Example

Pointcut Language Designator

context object of the join point 
(this)

AspectJ this()

CARMA inObject(?jp, ?object)

target object of the join point AspectJ target()

arguments AspectJ args()

return object of a call/execution

AspectC++ result()

CARMA objectResponse(?object, 
?message, ?response)

field/method in the context of the 
join point

AspectWerkz hasmethod()/hasfield()

0) pointcut exposeIntArgument(int i):
1)    call (public void set*(..)) && args(i);
2)
3) Object around(int i): exposeIntArgument(i){
4)    return proceed(++i);
5) }

Listing 2.8 Increasing an int argument of a call
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Listing 2.8 shows an example advice that makes use of an exposed argument.
Here, every call which starts with the prefix 'set' and which has an integer argu-
ment is intercepted before it is executed, its integer argument is retrieved and
incremented by one, and the new value is substituted in the call and the call is
then executed with the new integer value. 

In AspectC++, the primitive pointcut result() denotes the join points, whose
execution results in an instance of the class used as the parameter of result().

CARMA has an extensive set of context matching pointcuts, where three of
them are given in Listing 2.9. These provide information on some dynamic
properties about the denoted join point (These predicates are called dynamic
join point property predicates in CARMA). The predicate inObject provides the
context of the object which is related to the join point. The predicate
objectVariable provides access to the variable of the object which is denoted by
the parameters ?varName and ?value. The predicate objectResponse selects the
join point based on the result of the corresponding call. Listing 2.9 shows a
pointcut specification in CARMA, which designates every method execution
with two arguments, where the value of the second argument is five and the
object which executes the call has an instance variable named 'myVariable'. In
fact, there are three pointcuts here connected using the logical AND connector
(the character "," as in Prolog).

Structural join point matching (PBP.SM) As we discussed in section 2.2.1,
structural join points are defined in terms of syntactical constructs of the
language. Several AOP languages offer means to designate structural join
points. For example, AspectJ adopts so called type patterns for designating the
name of a syntactic construct in a program. For instance, the type pattern
com.acme.model..* designates every class within the package com.acme. The

0) ?jp matching
1)   reception(?jp,?anyMethod,<?firstArgument,5>),
2)   inObject(?jp,?object),
3)   objectVariable(?object,myVariable,?value)

Listing 2.9 An example CARMA pointcut
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following listing shows an application of a type pattern within the construct
declare @type:

This declaration states that the annotation @BusinessDomain is attached to
every type defined within the package org.acme.model. 

AspectC++, for example, introduces so called name pointcuts (also match
expressions) to designate structural join points. For instance, int C::%(...)
matches any member function of class C that returns an int value. AspectC++
has two extra predicates for designating types as structural join points: base()
and derived(). The first predicate returns the superclasses of classes used as the
parameters of the predicate. The second one returns all the subclasses of classes
used as the parameters of the predicate. In the example shown in Listing 2.11,
the pointcut scalable designates class Rectangle and all classes derived from
class Point which are at the same time direct or indirect base classes of class
Rectangle. (Example is taken from [35].)

Compose* has an extensive set of predicates to designate program elements as
structural join points. These predicates can refer to the properties of program
elements and their relationship with other program elements as wellListing
2.12 shows an example of their usage. In lines 0 and 3, the pointcut
collectionClass designates an instance of a class myapp.Collection. In the second

0) declare @type: 
1)    org.xyz.model..* : @BusinessDomain

Listing 2.10 A type pattern designating structural join points in AspectJ

0) class Shape { ... };
1) class Point : public Shape { ... };
2) ...
3) class Rectangle : public Line, public Rotatable { ... };
4)
5) /* --- */
6)
7) pointcut scalable() =
8)  (base("Rectangle") && derived("Point")) || "Rectangle";

Listing 2.11 Using the predicates base() and derived() in AspectC++
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part of this expression, in line 2, the predicate (classInheritsOrSelf) selects class
myapp.Collection and all its subclasses as a set and binds it to the variable C.. 

The second pointcut guiClasses between lines 5 and 8 designates all classes
within the namespace myapp.gui. 

The third pointcut returnsStrings between lines 10 and 14 designates all classes
that have at least one method that returns a string. In the first pointcut (called
selector in the terminology of Compose*), named collectionClass, the first pred-
icate selects the class myapp.Collection in the application and if this class exists,
it will be bound to the variable Collection. The second predicate
(classInheritsOrSelf) maintains the same value for the variable Collection,
through the unification mechanism of Prolog7. This second predicate selects
the class myapp.Collection and all subclasses that are inherited from it and binds
them as a result set to variable C. This result set is used by the selector through
the variable C as denoted in line 0. The second selector (guiClasses) works in a
similar manner: it selects all classes within the namespace myapp.gui. The third
selector is a bit more complicated: it selects all classes that have at least one
method that returns a String value. We refer to Appendix B for a more complete
description of the available Compose* predicates.

0) collectionClass = { C |
1)   isClassWithName(Collection, ’myapp.Collection’),
2)   classInheritsOrSelf(Collection, C)
3) }
4)
5) guiClasses = { C |
6)   isNamespaceWithName(NS, ’myapp.gui’),
7)   namespaceHasClass(NS, C)
8) }
9)
10)  returnsStrings = { C |
11)    isClassWithName(Str, ’java.lang.String’),
12)    methodReturnClass(M, Str),
13)    classHasMethod(C, M)
14)  }
15)  

Listing 2.12 Three example pointcuts in Compose*

7. We will discuss this in detail in section 2.5.2.
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Dynamic conditions (DC) 
In some AOP languages pointcut designators allow using dynamic conditions,
which may, for instance, refer to an argument of a method call.

As shown in Listing 2.13, for instance, in AspectJ, the primitive pointcut if
takes a Boolean expression as an argument and designates any call starting with
the prefix 'set' that has an int parameter of value 5.

In AspectJ, the pointcut if() can only make references to either the context vari-
ables of its pointcut specification, or static fields and methods because it is
executed outside the context of the corresponding an aspect instance.

Compose* incorporates dynamic conditions in the filter specifications. A typi-
cal example is given in Listing 2.14. Here, the conditions are declared between
line 3 and 4. The condition enoughCredits is used then in line 6 as an expression
of the Error filter.

This filter expression is delimited using braces and contains two elements sepa-
rated by a comma. A filter element is analogous to a call pointcut of AspectJ.
The first filter element (in line 6) ensures that if the condition enoughCredits is
true then the filter will accept any call (i.e. *.*) of any type. 

0) pointcut exposeIntArgument(int i):
1)    call (public void set*(..)) && arg(i) && if(i==5);

Listing 2.13 Using dynamic condition in a pointcut specification of AspectJ

0) concern CreditConcern {
1)   filtermodule TakeCredits {
2)     ...
3)     conditions
4)       enoughCredits : credits.enoughCredits();
5)     inputfilters
6)       check : Error = { enoughCredits => [*.*],
7)                         True ~> [*.play] };
8)     ...
9) }

Listing 2.14 Using condition in Compose*
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JAsCo introduces a language construct called hook, which encapsulates both
the pointcut and advice specifications as first class entities. Also the method
isApplicable() is provided for specifying the corresponding runtime condition.
The advices of a hook are allowed to execute only when isApplicable() returns
true. Listing 2.15 shows an example of using the method isApplicable() (taken
from [19]).  

In this example, isApplicable() specifies that all advice of the hook Subscribe will
only be executed if the variable subscribed is not false.

Scoping Pointcuts (SP)
Scoping pointcuts designate join points based on their relationship to their
context, for instance, the lexical unit or the control-flow in which they occur
(in contrast to property-based pointcuts that designate a join point based on
their direct properties or, the properties of their shadowpoints). Note that both
scoping and context-matching pointcuts aim at refining the context of the join
points to be designated. However, there are two important differences between
context-matching and scoping pointcuts: (1) context-matching pointcuts can
refer to only direct properties of the join points, while scoping pointcut may
refer to properties of a join point in a larger context through various types of
relationships, such as the chain of calls in a control-flow; (2) unlike context-

0) class ConditionalPublishManager extends PublishManager {
1)
2)   boolean subscribed = false;
3)
4)   hook Subscribe {
5)     Subscribe(subscribe(..args)) {
6)       execute(subscribe);
7)     }
8)
9)     isApplicable() { return !subscribed; }
10)
11)     after() {
12)       subscribed = true;
13)     }
14)   }
15)   ...  
16) }

Listing 2.15 Using isApplicable() in JAsCo
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matching pointcuts, scoping pointcuts cannot expose the context of a join point
in terms of first class entities that are passed to the advices to which the pointcut
is bound.

Lexical Scoping (SP.LS)
Lexical scoping pointcuts expect pointcuts describing structural join points as
their arguments. A lexical scoping pointcut matches a join point based on the
information whether the shadow point of the join point is defined within the
scope of a structural join point (i.e. a program element). 

The lexical pointcut within() can be found in many AOP languages, such as
AspectJ, AspectWerkz, JBoss, (AspectC++8). It expects packages and types as
scopes in its parameter. 

Control and data flow-based scoping (SP.CFS)
Control flow-based scoping pointcuts expect pointcuts describing behavioral
join points as arguments. They designate join points that occur within the
control flow of the given behavioral join point.

The pointcut withincode() expects methods and constructors as scopes in its
parameter; it will match any join point where the corresponding join point
occurs within the given set of methods or constructors.

The cflow pointcut picks out all join points that occur between entry and exit of
each join point P picked out by Pointcut, including P itself. Hence, it picks out
the join points in the control flow of the join points picked out by Pointcut. [38]

8. In Aspect++, the pointcut within() can also accept methods as parameters.

Table 2.16 Scoping pointcuts

Example

Pointcut Language Designator

execution within a method AspectC++ withincode()

execution within control-flow AspectWerkz cflow(), cflowbelow()

execution within data-flow AspectJ dflow[x,x]()
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The cflowbelow pointcut picks out all join points that occur between entry and
exit of each join point P picked out by Pointcut, but not including P itself.
Hence, it picks out the join points below the control flow of the join points
picked out by Pointcut. These control-flow based pointcuts are supported by
various AOP languages, such as AspectJ, AspectWerkz, AspectC++, and
JAsCo.

The dflow pointcut is another type of scoping pointcut, its definition is the
following [22]: assume x is bound to a value in the current join point, dflow[x,x
](Pointcut) matches the join point if there exists a past join point that matches
Pointcut,and the value of x originates from a value bound to x in the past join
point. More details on dflow can be found in [22].

Protocol-based Pointcuts (PRP)
To the best of our knowledge, protocol-based pointcuts are currently supported
only by JAsCo. A protocol-based pointcut allows to specify a dynamic
sequence of joinpoints instead of a single joinpoint, e.g. the execution of meth-
ods A-B-C in that order. Every transition in the protocol is defined using the
JAsCo pointcut language. Advices can be attached at every transition in the
protocol [36].

2.5.2 Dimension of Notation

Pointcut Declaration (PD)
Typically, AOP languages use a keyword, e.g. pointcut, that declares a pointcut.
The keyword is followed by the identifier of the pointcut. The pointcut decla-
ration may have formal parameters that are bound to the arguments of context
matching pointcuts. This is followed by a concrete pointcut specification, see
line 1 in Listing 2.17, as an example. Some aspect-oriented frameworks, such
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as AspectWerkz and JBoss AOP, work with similar concepts, however, the

pointcut is defined within an XML tag. Line 5 of Listing 2.17 shows an exam-
ple pointcut declaration in XML that corresponds to the first pointcut of line 1.
Besides the XML notation, a pointcut can also be defined by a predefined anno-
tation (Java 1.5) in AspectWerkz; line 9 of Listing 2.17 shows an example that
corresponds the previous pointcut declarations.

Note that the common features of all alternatives is that the pointcut definition
has an identifier and may have formal parameters. These features will play an
important role in the composition of pointcuts: the identifier allows for refer-
encing (reusing) the pointcut definition in another pointcut definition; the
parameters allow for exchanging parameters with other pointcuts or the advice
which the pointcut is bound to.

2.5.3 Dimension of Composition

Pointcut-Pointcut Composition (PPC)
Pointcuts can be composed with other pointcuts. This allows for reusing/refin-
ing an existing pointcut by combining it with another (new) pointcut. In the
pointcut-pointcut composition dimension, we will present four alternatives that
support the composition of pointcuts: composition operators, embedded point-
cuts, parametrizable pointcuts, unification and rule-based compound point-
cuts.

0) /* a pointcut definition as a program element */
1) pointcut example2(Employee e):
2)    call (public void set*(..)) && this(e);
3)
4) /* a pointcut definition as an XML specification */
5) <pointcut name="example2(Employee e)" expression=
6)    "call (public void set*(..)) AND this(e)">
7)
8) /* a pointcut definition as an annotation specification */
9) @Expression("call (public void set*(..)) && this(e)")
10) void example2(Employee e){}

Listing 2.17 Pointcut definitions in Aspect & AspectWerkz 
44



POINTCUTS
Composition Operators (PPC.CO)
Most aspect-oriented languages use standard logic AND, OR and NOT opera-
tors to express the composition of predicate-based pointcuts.

Listing 2.18 shows two examples of using operators to compose pointcuts in
AspectJ. The pointcut example2 has two pointcuts in its declaration: the point-
cut call will designate every call with the given signature. This pointcut is
composed with the pointcut this by an AND operator to specify the context of
the calls; hence, it narrows down the possible set of join points. The pointcut
example3 reuses the previous pointcut and composes it with another pointcut by
an OR operator.

Embedded Pointcuts (PPC.EP)
Several AOP languages use type and other sorts of patterns - that designate
structural join points - within the context of pointcuts that designate behavioral
join points. In other words, a structural join point matching pointcut is embed-
ded into a behavioral pointcut. In this context, the structural join point match-
ing pointcut refers to the properties of the shadow point of a behavioral join
point. For instance, in AspectJ, type patterns are not the only means for desig-
nating structural join points. There are other patterns, such as method and
constructor patterns, that can be used in the arguments of event matching point-
cuts to refer to the properties of the shadow point of a join point. For instance,
the visibility, name, and return type of a method are such properties; all of these
properties are part of the method type pattern of AspectJ. The following code
fragment shows a simple example of a method pattern: 

By using the bold faced method pattern in Listing 2.19, the pointcut example
matches any method call where the corresponding method is ’public’, has an

0) pointcut example2(Employee e):
1)    call(public void set*(..)) && this(e);
2)
3) pointcut example3(Employee ee):
4)    example2(ee) || call(public void Manager.get*(..));

Listing 2.18 Using logic operators to compose pointcuts in AspectJ

0) pointcut example():
1)    call(public * Employee.get*(..)); 

Listing 2.19 Using a method pattern in an event matching pointcut
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arbitrary return type ’*’, is within the type ’Employee’, starts with the ’get’
prefix and has an arbitrary number of parameters ’(..)’ with arbitrary types. For
more information on type and other patterns in AspectJ, we refer to [23]. 

Parametrizable pointcuts (PPC.PP)
There are languages, e.g. JAsCo, that offer parametrizable pointcut definitions.
A common characteristic of such languages is that a pointcut definition has two

parts: a generic and an application specific one. The generic part of the pointcut
definition does not contain any application specific code; hence, it can keep the
unit in which it is located generic (i.e. reusable). The application specific part
of the pointcut contains information, e.g. signatures, or types, that are specific
to a particular application; hence, this part is located in another module.

Listing 2.20 shows a pointcut definition in JAsCo. The constructor of the hook
(line 3) contains the generic part of the pointcut definition; the formal parame-
ters are bound to the pointcuts in the body of the constructor. In the connector
SampleConnector, the instantiation of the hook (line 11) contains the actual
parameters that correspond to the formal parameters in line 3.

Unification in Pointcuts (PPC.UN)
Various AOP languages have pointcut languages implemented on the basis of
logic languages, such as Prolog. A common characteristic of these pointcut
languages is that they make use of the features of logic languages, such as unifi-
cation. For example, the selector language of Compose* - to designate struc-

0) /* JAsCo */
1) class Sample{
2)   hook Example2{
3)     Example2(m1(..),m2(..)){ call(m1) && withincode(m2); }
4)
5)     after(){ ... }
6)   }
7) }
8)
9) connector SampleConnector{
10)    Sample.Example2 ex = 
11)      new Sample.Example2( * *.set*(*), * Employee.*());
12) } 

Listing 2.20 Hook and Connector definition in JAsCo
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tural join points- also supports unification. Listing 2.21 (lines 9-10) illustrates
this by a simple example. The selector example2 uses two predicates in its spec-
ification. The first predicate binds the class Employee, if it exists, to the variable
C. The second predicate will hold the same value for variable C, and it will bind
the list of classes inherited from Employee to the variable AnyRes. The selector
uses AnyRes as a result set (indicated before the symbol | in line 9), the filter-
module sampleModule will be superimposed on every class assigned to this
variable (line 12). Note that the comma after each predicate means logical

AND composition. CARMA, Sally [20], LogicAJ [26] are other examples of
languages that use unification. 

Logic Rules as Compound Pointcuts (PPC.RB)
Compound pointcuts, i.e. a composition of pointcuts, can also be expressed by
the use of multiple (Prolog-like) logic rules in AOP languages that are founded
on the concepts of logic languages. For instance, CARMA supports this type
of pointcut composition; Listing 2.22 illustrates it by an example. In line 0 and

0) /* a pointcut definition as a filter element */
1) concern Sample{
2)   filtermodule SampleModule{
3)     inputfilters
4)        e: Error = { True => <*.set*> }                  
5)   }
6)
7)   superimposition{
8)     selector 
9)       example2 = { AnyRes | isClassWithName(C,’Employee’),
10)                             inheritOrSelf(C,AnyRes};
11)     filtermodules
12)       example2 <- SampleModule; 
13)   }
14) }

Listing 2.21 Selector definition and message filtering in Compose*
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4, two rules are declared with the same identifiers and parameters. These two

logic rules gather all state changing methods: the first one designates those
methods that assign to a variable of the class; the second one designates meth-
ods that self-call a method that assigns a variable. When changeState is used in
a pointcut expression both rules will be evaluated by the resolution engine of
Prolog.

Advice-Pointcut Composition (APC)
Advices are bound to pointcuts to assign the crosscutting behavior to join point
where the crosscutting behavior has to be executed. We have identified two
alternatives of the advice-pointcut composition in most AOP approaches:
direct advice-pointcut binding and separate binding specification.

Direct Advice-Pointcut Binding (APC.DAB)
In several aspect-oriented languages the definition of an advice also contains
the pointcut - that designates the join points - where the advice should be
executed. That is, an advice has a reference to a pointcut in its specification. As
a result, an advice cannot be reused and associated with another pointcut, for
instance, in another application. This problem can be circumvented by associ-
ating the advice with an abstract pointcut.  (We will discuss the abstract point-

0) changesState(?class,?selector) if
1)   shadowIn(?class,?selector,?sp),
2)   assignmentShadow(?sp,?variable).
3)
4) changesState(?class,?selector) if
5)   shadowIn(?class,?selector,?sp),
6)   messageShadow(?sp,?rcvr,?msg),
7)   selfReceiver(?rcvr),
8)   changesState(?class,?msg).

Listing 2.22 Logic rules as compound pointcuts in CARMA

0) /* direct advice-pointcut binding */
1) pointcut tracedMethods():...;
2)
3) before(): tracedMethods(){ 
4)   /* crosscuting behavior */ 
5) }

Listing 2.23 Direct binding for advice-pointcut composition in AspectJ
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cut mechanism in detail in the next section.) Listing 2.23 shows a simple exam-
ple of the direct advice-pointcut binding in AspectJ: the declaration of the
before advice contains the reference to the pointcut tracedMethods.

Direct advice-pointcut binding can be found, for instance, in AspectJ,
AspectC++, JAsCo and CARMA.

Abstract Pointcut-Advice Binding (APC.DAB.ABS)
Abstract pointcuts are introduced with the keywords abstract pointcut. An
abstract pointcut definition consists of only the identifier of the pointcut and the
formal parameters; i.e. there is no concrete pointcut specification after the
formal parameters (line 1 in Listing 2.24). On the other hand, the abstract point-
cut, like a normal pointcut, can be bound to advices (line 3 in Listing 2.24) as
well. The abstract pointcut can be realized in another aspect which is inherited
from the one that contains the abstract pointcut specification (lines 7-9 in List-
ing 2.24). 

The benefit of the abstract pointcut definition is that it allows for deferring the
time of specifying the concrete pointcut. Thus, it supports defining generic
(reusable) aspects and their customization to different applications. The
customization of an abstract pointcuts is illustrated in two different application
contexts (lines 7-9 and 12-14 in Listing 2.24). 
0) public abstract aspect GenericLogger{
1)    abtract pointcut tracedMethods();
2)    
3)    before(): tracedMethods(){ /* logging behaviour */ }
4) }
5)
6) /* Application A. */
7) public aspect FigureLogger extends GenericLogger{
8)    pointcut tracedMethods(): call(* FigureElement+.*(..));
9) }
10)
11) /* Application B. */
12) public aspect EmployeeLogger extends GenericLogger{
13)    pointcut tracedMethods(): call(* Employee+.*(..));
14) }

Listing 2.24 Abstract pointcut definition in AspectJ
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Various aspect-oriented languages, e.g. AspectJ, AspectC++ and Sally support
the concept of the abstract pointcut definition.

Separate Binding Specification (APC.SBS)
Advices can be independently specified from any particular pointcut. In this
case, a separate specification binds an advice to a pointcut. Listing 2.25 shows
an example binding specification in AspectWerkz. The advice is specified as a
method (called traceEntry) within a class (line 1-5), the pointcut traceMethods is
specified in a weaving specification within an XML tag (line 7). The binding
specification (line 9-10) binds the method traceEntry as a before advice to the
pointcut traceMethods. The consequence of this technique is that advices can be

reused and associated with different pointcuts in different binding specifica-
tions. That is, the separate binding specification is an alternative for the reuse
of advices, as abstract pointcut are. Note that the separate binding specification
specifies when, e.g. before or after, the crosscutting behavior - represented by
a method - has to be executed. That is, in contrast with direct advice-pointcut
binding, this alternative also allows for reusing the same method to express
different types of advices.

2.6 Advices
Figure 2.6 illustrates the design dimensions of the advice concept. We iterate
and discuss them in detail in the subsequent sections.

0) /* separate binding specification */
1) public class Tracer{
2)   public void traceEntry(JoinPoint thisJP){
3)     /* crosscuting behavior */
4)   }
5) }
6)
7) <pointcut name="tracedMethods"  expression="…" />
8) <aspect name="TracerAspect" class="Tracer">
9)    <advice name="traceEntry" type="before" 
10)            bind-to="tracedMethods"/>
11) </aspect>

Listing 2.25 Separate binding specification for advice-pointcut composition 
in AspectWerkz
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Figure 2.6 The advice concept

2.6.1 Dimension of Semantics
Similarly to the categories of join points (i.e. behavioral or structural), we
distinguish two main categories of advices: behavioral and structural advices.
In the following section we discuss these categories.

Behavioral Advices (BA)
Behavioral advices are executed on behavioral join points. This also means that
these advices are coupled with behavioral pointcuts. The execution of these
advices is automatically triggered when the control flow reaches the join point.
(That is, as we wrote before, these advices are not explicitly called as opposed
to the method construct of traditional object-oriented languages.) We distin-
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guish further two sub categories of behavioral advices: generic advices and
domain-specific advices.

Generic Advices (BA.GA)
Generic behavioral advices are the units of aspect-oriented languages to formu-
late the crosscutting behavior in terms of the instructions of generic program-
ming languages, such as Java, for example. 

The generic before, after and around advices are supported by various AOP
languages, such as AspectJ, AspectC++, AspectWerkz and JAsCo. The before
and after advice are executed before, respectively, after the original join point
(i.e. the intercepted event) is executed, while the around advice is executed
instead of the original join point.

AOP languages provide a mechanism by which the original behavior can be
performed within the context of the around advice. This can be a special

Table 2.26 Behavioral advices1

1. Note that the table presents only example cases, one particular advice can be supported by
more aspect-oriented languages.

Example

Advice type Language Advice

execution before the jp AspectJ before()

execution after the jp AspectJ after()

execution instead of the jp AspectJ around()

execution after the jp: when an 
exception is thrown

AspectWerkz after() throwing

execution after the jp on a given 
return type, without exception 

AspecWerkz after() returning

execution instead of the jp: when 
an exception is thrown

JAsCo around() throwing

execution instead of the jp on a 
given return type

JAsCo around() returning
52



ADVICES
keyword -  proceed - of the AOP language or a method in the join point type.
We discussed this in detail in section 2.4.2.

It is important to note that the after advice is always executed, regardless if an
exception has been thrown in the execution of the method of a join point (i.e.
the intercepted method). For this reason, a specialized version of the after
advice - called after throwing - is supported in a couple of AOP languages
(AspectJ, AspectWerkz, JAsCo). This advice may have a parameter that
expects the type of an exception and in that case, it executes only when an
exception is thrown in the intercepted method. If there is no type specified, the
advice will always execute whenever an exception has been thrown. 

There is another specialized version of after, called after returning. This type of
advice also expects a type as parameter. It executes when the method returns
normally (without throwing an exception) and the actual type that is returned
is the type by which the advice is declared. AspectJ, AspectWerkz and JAsCo
support this type of advice.

Note that these types of advices (after throwing and after returning) practically
specify extra conditions (type of exception and return value) for the activation
of an advice. In this sense, these clauses (throwing and returning) show a similar
functionality with the context matching pointcuts.

JAsCo supports two other types of behavioral advices: around throwing and
around returning. These are similar types to the advices we discussed before; the
difference between them is that these advices do not execute after but instead
of the original join point.

Domain Specific Advices (BA.DA)
There are languages where advices have domain-specific (or dedicated)
semantics. The common characteristic of these language concepts is that the
advice has very specialized semantics, as opposed to the generic advice
concept that is formulated in terms of a Turing-complete programming
language. One good example for the dedicated advice concept is the filter
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construct of Compose*. Listing 2.27 shows a simple filtermodule specification
that refers to two filters.

The content of this filtermodule has already been discussed in section 2.5.1
under Listing 2.14. The specification of the filtermodule uses two pre-defined
filter types (line 6 and 8): Error and Meta. These filter types have pre-defined
semantics: the Error filter controls (allows or disallows for) the execution of the
intercepted message (i.e. the execution of the original join point) depending on
its properties and certain states in the system. The Meta filter, if it matches the
signature play, specifies that the intercepted message is reified and sent as a
parameter to a method (withdraw) to be executed. Besides these filter types,
Compose* has other predefined filter types, such as Wait, Substitute and
Dispatch. 

COOL [24] is a domain-specific aspect-oriented language on synchronization.
In COOL, the method sets selfexlusive and mutexlusive, as well as the method
manager declarations, act as dedicated advice specifications.

We have identified two benefits of using advices with dedicated semantics. As
compared to the generic advices of Turing-complete languages, advices with
restricted semantics allow for reasoning, for instance, about their composition,
or conflict detection in their composition [16]. Another advantage of this type
of advices is that they allow for a very efficient reuse of a domain specific solu-
tion, as optimized semantics for a specific domain. For the reason, on the other
hand, they are not suitable for expressing generic behavior. 

0) filtermodule TakeCredits{
1)    externals
2)       credits : Jukebox.Credits = Jukebox.Credits.instance();
3)    conditions
4)      enoughCredits : credits.payed();
5)   inputfilters
6)      err : Error = { enoughCredits => [*.*], 
7)                   true ~ > [*.play ] };
8)   pay : Meta = { [*. play ] credits.withdraw }
9) }

Listing 2.27 An example filtermodule in Compose*
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Structural Advices (SA)
In general, structural advices are related to the structure of application; typi-
cally, they are performed on structural join points and behavioral join points
that can be determined in compile time9.

Introductions (SA.IN)
Introductions perform modifications on the structure of a program; therefore,
these advices are coupled with structural join points. Introductions are called
inter-type declarations in AspectJ. This type of structural advice introduces
new program elements into existing ones. Field and method introductions into
classes are quite common in a couple of AOP languages (e.g. AspectJ,
AspectC++, Sally). The following listing shows some simple introductions in
AspectC++10.

First, a pointcut is defined that designates two classes, Circle and Polygon, as
structural join points. The first advice (line 2) introduces a Boolean variable
into those classes. The second advice (line 3-5) introduces a method that sets
the state of that variable. The last advice (line 6) specifies that every class with
a name that ends with "Object" is derived from the class MemoryPool. (The
change of a superclass can be achieved by the statement declare parent in
AspectJ.)

Classes can also be used as structural join points for introducing mixins. (With
mixins the class definition defines only the attributes and parameters associ-
ated with that class; methods are left to be defined elsewhere as, in CLOS [9],

9. This means that the pointcut expression that designates the join point cannot contain infor-
mation that can be determined in runtime, e.g. dynamic condition.

0) pointcut shapes() = "Circle" || "Polygon";
1)
2) advice shapes() : bool m_shaded;
3) advice shapes() : void shaded(bool state) {
4)    m_shaded = state;
5) }
6) advice "%Object" : baseclass(MemoryPool);

Listing 2.28 Some example introductions in AspectC++

10.Examples are taken from [35].
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generic functions.) The introduction of mixins is supported by, for instance,
JBossAOP and AspectWerkz. 

The introduction of annotations (also called custom attributes in .NET, meta-
data facility in Java) is also supported in AspectJ and Compose*. In these
languages, annotations can be introduced on various types of program
elements, such as fields, methods, classes and packages.

Note that dependency problems may arise when the pointcuts are resolved and
the structural advices are performed in the compilation phase. Typically, a
dependency problem may occur when a pointcut depends on a structure that is
affected by an introduction.

Constraints (SA.CN)
AspectJ and JBossAOP have other types of simple structural advices. In
AspectJ, the construct declare error is coupled with statically determinable
behavioral pointcuts and throws an instance of IllegalAccessException whenever
the designated join point occurs. This construct is suitable for expressing archi-
tectural constraints, e.g. illegal calls to certain units. The statement declare
warning works in a similar, except that prints a warning message instead of
throwing an exception. The common characteristics of these constraint-like
advices are that they are coupled with behavioral pointcuts that can be evalu-
ated in compile-time, and they are performed also in the compilation phase.

Sub-dimension of Computability

Non-Turing Complete Advice (NTC) The crosscutting behavior is often
expressed in terms of non-Turing complete specifications, typically, in case of
declarative advice concepts. Note that we have recognized that Compose* and
COOL - the languages that we considered in this analysis - had non-Turing-
complete advice specifications. Naturally, this does not mean that it is not
possible to ’create’ a declarative advice construct which is Turing-complete.

Turing Complete Advice (TC) The crosscutting behavior is expressed in terms
of Turing complete specification. Typically, imperative advice constructs have
this characteristic of computability.
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2.6.2 Dimension of Notation
Regarding the representation of advices, we have observed a wide range of
alternatives in the current AOP languages. We defined three subdimensions to
characterize the representation of advices: form, specialization and scope. Note
that these subdimensions are orthogonal to each other: a concrete advice
concept of a given aspect-oriented language can be characterized in any subdi-
mension.

Dimension of Form

Imperative Advice (IM) The imperative advice concept includes those
languages that have methods and method-like units for the advice concept and
the behavior is expressed in terms of instructions of generic programming
languages, such as Java. 

Declarative Advice (DE) The definition of the advice is a sort of declarative
specification that expresses the crosscutting behavior. The declarative defini-
tion can cover various language concepts, such as those that we have discussed
under the section Domain Specific Advices.

Dimension of Specialization

Generic Advices (Methods) (GA) Several aspect-oriented languages and
frameworks (e.g. AspectWerkz, JBossAOP, JAC) use the method construct of
object-oriented languages to specify the crosscutting behavior. A common
feature of these languages is that the actual join point instance is passed as a
parameter to a method; i.e. the method always has a formal parameter with the
type of the join point. Listing 2.3 (in page 31) shows a simple example for such
a method.

Dedicated Units as Advices (DU) Typically, the definition of the advice also
includes a keyword that specifies that the advice should be performed before,
after or around the actual join point. That is, the definition of the advice
contains information about the type of the advice, as opposed to the case where
only regular methods represent the advice. For instance, AspectJ, AspectC++,
JAsCo have this type of advice-unit within the context of an aspect (or hook,
in case of JAsCo).
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Dimension of Scope 
In this dimension, we distinguish between advice units (AU) and advice state-
ments (AS). An advice statement differs from an advice unit in the sense that it
represents the advice behavior as a single statement. That is, this construct does
not have the usual characteristics of a unit, such as the scope, for instance.
Statements such as declare parent, declare warning in AspectJ or the selfmutex
method set of COOL can be classified as declarative advice statements.

2.6.3 Dimension of Composition

Advice Ordering (AO)
It is a common phenomenon in AOP that not just a single but several advices
have to be executed at the same join point. (We call such a join point shared
join point.) In other words, advices are coupled with pointcuts that designate a
common set of join points. As advices, in general, are executed sequentially in
aspect-oriented languages, many of them offers language concepts to specify
the execution order of advices at shared join points:

a. declare precedence -- AspectJ /advice precedence --AspectC++
b. stack --JBossAOP
c. precedence strategy --JAsCo

AspectJ has the statement declare precedence to define partial ordering relation-
ships between aspects. This, implicitly, defines an ordering relationship
between the advices of those aspects in the case of shared join points. Note that
the granularity of the ordering specification is the level of aspects; this implies
that two different advices of two aspects with a given precedence cannot have
different order specification. 

The same granularity is applied in AspectC++; the difference with the AspectJ
approach is that the precedence of aspects can be specified on particular join
points, whereas the precedence of aspects is generic to every join point in
AspectJ.
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In JBossAOP, the stack construct allows for defining a predefined, ordered set
of advices/interceptors that can be referred to within a binding element. Listing

2.29 shows an example of the stack construct and its usage. The first part of the
listing (between lines 0 and 3) presents a stack named stuff that enumerates two
advices. This stack is referred to in a binding specification, in line 8-10. The
benefit of this approach, besides the ordering, is that the predefined set can be
(re-)referenced to in different binding specifications. In addition to the stack
construct, JBossAOP has the precedence construct to define a relative ordering
of the execution of advices.

In JAsCo, the connector construct allows for specifying a precedence for the
execution of hooks. The granularity of the specification is the level of advices;
this means that different advices of the same aspect can have different execu-
tion order.

Custom Advice-Advice Composition (CAC)
There are aspect-oriented approaches that provide a means for the customiza-
tion of the composition of aspects at shared join points. In these languages, it
is possible to express complex interactions among aspects (and advices)
besides their execution order.

In JAsCo, the interface CombinationStrategy provides this functionality. An
implementation of this interface works like a filter on the list of hooks that are
applicable at a certain point in the execution. Each combination strategy needs
to implement the method validCombinations that filters the list of applicable
hooks and possibly modifies the behavior of individual hooks.

0) <stack name="stuff">
1)    <advice name="timer" aspect="org.jboss.TimingAspect"/> 
2)    <advice name="trace" aspect="org.jboss.TracingAspect"/>
3) </stack>
4)
5) <bind pointcut="execution(* POJO->*(..))">
6)       <stack-ref name="stuff"/>
7) </bind>

Listing 2.29 The stack construct of JBossAOP and its usage
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In the Aspect Moderator Framework [14], Constantinides et. al. propose a dedi-
cated class, called moderator, to manage the execution of aspects at shared join
points. The moderator class, for example, can express the conditional execu-
tion of aspects. The application programmer can implement new moderator
classes: it is possible to introduce other activation strategies as well. 

2.7 Aspects
Figure 2.6 illustrates the design dimensions of the aspect construct. We iterate
and discuss them in detail in the subsequent sections.

Figure 2.7 The aspect concept

2.7.1 Dimension of Semantics
The primary role of the aspect concept is to encapsulate the previously
discussed language concepts - pointcuts and advices - into a module of an
aspect-oriented language. In addition to these constructs, aspects may contain
additional, regular methods and member variables in various aspect-oriented
languages. Besides, there are other important concerns, e.g. aspect instantia-
tion and deployment, that aspects may express. We discuss these concerns in
the following sections.
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Aspect Instantiation (Scope of aspect instances) (AI)
In general, aspects are instantiated and advices run in the context of aspect
instances. An aspect instance has a very important property: its execution scope
- e.g. in terms of object instances - on which the aspect instance operates. For
example, it is common that only one instance of an aspect is created for the
complete execution of a program. The advice of this aspect runs whenever the
corresponding join point happens in any particular instance of the system. A
new aspect instance can also be created and assigned to each new instance of a
class; i.e. the scope of the aspect instance is one object instance. In this case,
the advice of the aspect runs if the join point occurs in the object instance which
is associated with the aspect instance. In short, the instantiation of aspects
determines their scope of operation.

In general, AOP languages handle the instantiation of aspects in two ways: (a)
most AOP languages handle the instantiation of aspects in an implicit way by
offering built-in instantiation strategies; (b) some AOP languages offers
language concepts to handle instantiation of aspects in an explicit manner.

Implicit instantiation (AI.IMP)
As opposed to the explicit instantiation mechanism of OOP languages, aspects
are implicitly instantiated by the weaver in many aspect-oriented languages.
For this purpose, these languages offer standard instantiation strategies that are
normally part of the aspect specification. This instantiation strategy determines
the scope - e.g. in terms of object instances, control-flow, threads - of an aspect
instance in which the aspect instance "operates". The following instantiation
strategies are known in the current AOP languages:

Table 2.30 Scope of aspect instantiation1

Example

Scope of Instantiation Language Keywords

per vm (singleton) AspectJ default

per object AspectJ perthis(), pertarget()

per join point AspectJ percflow(), 

per method JAsCo permethod
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The per VM (virtual machine) strategy specifies that only one instance (i.e. a
singleton) is created for the full execution of the application. The per object
strategy specifies that a new aspect instance should be created for each new
object instance. Listing 2.31 shows a simple aspect specification that does per
object instantiation.

In this example, the clause pertarget of AspectJ (line 1) specifies that a new
instance of SimpleCaching is created for every new target of the calls
Circle+.getArea(), i.e. for every new instance of Circle. (Similarly, the clause
perthis assigns the aspect instance to the sender of the message in AspectJ.) In
AspectJ, every aspect has a static method, called aspectOf, that returns the
corresponding aspect instance of an object instance. In line 9, we return the
instance of SimpleCaching that corresponds to the given instance of Circle.

The execution scope of an aspect instance can be limited in terms of control-
flow as well. The per join point strategy specifies that a new instance of an
aspect is created whenever the execution enters a join point specified by a
pointcut. AspectJ, for instance, supports this type of instantiation by the clauses
percflow and percflowbelow. The per thread strategy (JAsCo, older version of

per thread JAsCo perthread

per class AspectWerkz perClass

1. Note that the table presents only example cases, one particular scope of instantiation can be
supported by more aspect-oriented languages.

0) public aspect SimpleCaching 
1)      pertarget(call Circle.getArea()){ ...}
2)
3) /* getting the corresponding aspect instance of 
4)  * an object instance */
5) ...
6) void test{
7)    Circle c = new Circle();
8)    ...
9)    SimpleCaching sc = SimpleCaching.aspectOf(c);
10) }

Listing 2.31 An example of per object (pertarget) instantiation in AspectJ

Table 2.30 Scope of aspect instantiation1
62



ASPECTS
AspectWerkz) instantiate and (limit the scope of) an aspect per thread. In
JAsCo, it is possible to define custom instantiation strategies by custom aspect
factories.

Explicit instantiation (AI.EXP)
There are also languages that support the explicit instantiation of aspects (by
using constructors), such as JAsCo, AspectS and CaesarJ[30]. The common
characteristic of these languages is that aspects are represented by first class
abstractions that can be instantiated.

Aspect Deployment (AD)
Although the concept of aspect deployment exists in a couple of aspect-
oriented languages, the concepts of aspect instantiation and aspect deployment
are often not separated. In the reference model, we define the role of aspect
deployment as an ability to enable and/or disable the operation of aspects. For
example, a disabled (undeployed) aspect cannot intercept the messages defined
in its pointcuts. That is, the difference between aspect instantiation and deploy-
ment is that aspect instantiation determines the working scope of an aspect
instance, while aspect deployment determines whether the aspect instance is
active for the given scope. Aspect deployment is supported by CaesarJ, Aspect-
Werkz, JBoss and JAsCo, for example.

Aspect Parametrization (AP)
AOP approaches that have implicit instantiation strategies and represent
aspects by standard object-oriented classes and XML specification, e.g.
AspectWerkz and JBossAOP, support the concept of aspect parametrization.
This concept allows for passing external parameters to aspects. By using this
construct, an aspect can be reused in different application contexts, as different
parameters can provide different configurations for the aspect. Listing 2.32

shows an example for this. In this case, the parameter can be accessed in the
aspect behavior implementation by using the API AspectContext.
getParameter("timeout") in AspectWerkz.

0) <aspect ... >
1)     <param name="timeout" value="10"/>
2) </aspect>

Listing 2.32 Aspect Parametrization in AspectWerkz
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Note that this construct is not necessary in languages that support the explicit
instantiation of aspects through the use of constructors.

2.7.2 Dimension of Notation

Classes as Aspects (CLA)
In some AOP approaches (e.g. AspectWerkz, JBoss), advices are represented
by regular object-oriented methods, aspects are represented by standard
classes. This type of representation uses an additional specification, for
instance, placed in a separate XML descriptor, that describes the aspect-
specific behavior, e.g. advice binding, instantiation strategy, etc. of a class.
Listing 2.25 (in page 50) shows a simple example of such a class and specifi-
cation.

Dedicated Units as Aspects (DUA)
In most AOP approaches, aspects are represented by dedicated language units.
This type of unit encapsulates the advices, pointcut and the other related spec-
ifications, e.g. aspect instantiation, advice ordering, etc., of AOP languages.
We distinguish two alternatives of this construct: context units (DUA.CTX) and
container units (DUA.CON). Context units provide context (state) information
that can be referred to by the encapsulated units. In contrast, container units act
as simple containers for the encapsulated units and they do not provide context
information. Container units are, for instance, the concern construct of
Compos*, and the connector construct of JAsCo.

2.7.3 Dimension of Composition

Aspect Inheritance (AI)
Languages that have dedicated language concepts to represent aspects, e.g.
AspectJ and AspectC++, provide an inheritance relationship between aspects
in order to support the reuse of advices. In this type of relationship, advices can
be reused in the inherited aspects by redefining the pointcuts that they are
attached to. It is important to note that we consider aspectual polymorphism in
case of such aspect inheritance relationship in which not only pointcuts but also
advices can be overridden.
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Aspectual Polymorphism (AP)
A few languages support aspectual polymorphism; i.e. the inheritance of
aspects in a way, that their advices can also be overridden. In this type of
composition, advices are also bound late, similar to the late binding mechanism
in object-oriented languages. Aspectual polymorphism is supported by CaesarJ
and JAsCo (through the use of refinable methods in hooks), for example.

Aspect-Aspect Composition (AAC)
The composition of advices is often specified on the granularity level of
aspects. The literature refers to this type of composition as aspect-aspect
composition or aspect composition model [12]. In the subsection Custom
Advice Composition of section 2.6.3, we discussed several alternatives that
express the composition of aspects based on the composition of advices.

2.8 Special Languages
Although DemeterJ [28] and HyperJ [34] do not explicitly apply AOP
concepts, many of their language concepts show similarity to the concepts that
we discussed in the previous sections. In this section, we discuss the concepts
of DemeterJ and HyperJ with respect to the reference model and the previously
discussed AOP concepts.

2.8.1 DemeterJ
The join point model of DemeterJ is the class structure of an application; i.e.
DemeterJ deals with structural join points. The structure of the application is
described as a class grammar that describes all used classes and their relations.
Listing 2.33 shows a simple grammar that describes the structure of an appli-
cation containing  Line, Point,  XCoord and YCoord classes.

A traversal strategy describes a set of paths in the class graph; i.e. it is a query
that selects a set of structural join points in a given order. For this reason,
traversal strategies can be considered as structural pointcuts. The simplest

0) Line = <p> Point .
1) Point = <x> XCoord <y> YCoord .
2) XCoord = .
3) YCoord = .

Listing 2.33 A simple example grammar
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form of traversal strategies are called single edge strategies; e.g. {Line ->
XCoord} describes a single edge traversal strategy from Line to XCoord. Deme-
terJ has a wider range of constructs to specify traversals and to create other
sorts of traversals; the interested readers can find more details in [28].

In DemeterJ, the crosscutting behavior is expressed in terms of traversal
methods, visitors, visitor methods and adaptive methods. 

A traversal method of DemeterJ acts as a sort of binding specification: it
consists of a name, a traversal strategy and a list of possible visitor classes. A
traversal method performs a traversal on the instance graph of a given class
graph. It takes a visitor as an argument and executes its behavior during the
traversal. Listing 2.34 shows a simple traversal method that iterates over all
points of a line for DisplayVisitor.

The visitor class of DemeterJ can be considered as an aspect. A visitor class
may contain three types of visitor methods:

• Before - A before method is invoked as soon as the traversal reaches
an object of the given class.

• After - An after method is invoked after a traversal has finished tra-
versing an object of the given class, on its way back out of the object. 

• Around - An around method is invoked in an object of the given class
instead of continuing along the traversal. The continuation of the tra-
versal must be explicitly invoked if desired, by using the apply method
on the special variable subtraversal, like so:

0)   traversal allPoints(DisplayVisitor) {
1)     to { Point };
2)   }

Listing 2.34 A simple traversal method

0)     around Point (@
1)        ...
2)        subtraversal.apply();
3)     @)

Listing 2.35 An example visitor method
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From this perspective, a visitor method can be considered as the advice
concept of the reference model. The special variable subtraversal can corre-
spond to the join point instance in the representation dimension of the join
point concept. Note that DemeterJ uses dedicated units for representing
advices and aspects, while DJ [27] uses the normal class and method constructs
of Java for representing the above mentioned visitor classes and methods.

The interested readers can find more information about DemeterJ and DJ in
[28] and [27].

2.8.2 HyperJ
To discuss the concepts of HyperJ briefly, we refer to [12] "...HyperJ does not
use the terms ‘joinpoint model’ and ‘pointcut language’ because it is not based
on a dominant decomposition approach such as other aspect languages.
Instead of expressing an aspect that crosscuts a base program (in a dominant
decomposition), HyperJ allows to express multiple decompositions of the
program as separate ‘hyperslices’ (previously called ‘subjects’ in Subject-
oriented Programming). Each decomposition is called a hyperslice. The inten-
tion is that each hyperslice contains the implementation of a single concern
using the standard programming language constructs (i.e. it is implemented in
standard Java). A set of hyperslices can then be combined into a hypermodule
using composition rules. The resulting hypermodule contains all concerns
implemented in each hyperslice in the composition."

In HyperJ, concerns are implemented by regular Java classes. These classes,
their fields and methods as well as their namespace can be considered as the
structural joinpoint model of HyperJ. (They are called implementation arti-
facts in the terminology of HyperJ.)

The concerns implemented by different classes need to be identified; this is
done by the so-called concern mapping. The concern mapping assigns the
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implementation artifacts to a set of dimensions and concerns within those
dimensions. HyperJ is capable of expressing the following mappings:

• Package mapping: indicates that the entire contents of a package
implement a concern in a certain dimension

• Class and interface mapping: indicates that a class or interface imple-
ments a concern in a certain dimension

• Operation mapping: indicates that an operation addresses a concern in
a certain dimension

• Field mapping: indicates that a field addresses the implementation of a
concern in a certain dimension

In the following listing we show two simple mapping as examples:

The first mapping specifies that the package project.tests addresses the
Verification concern in the Feature dimension. The second mapping specifies
that any method with name check pertains to the concern Feature.Check. Since
concern mappings addresses, in general, multiple program elements, they can
be considered as structural pointcut specifications in HyperJ.

HyperJ does not deal with constructs such as advices and aspects, concerns are
expressed in terms of regular object-oriented methods and classes. For this
reason, HyperJ is considered as a symmetrical approach, as opposed to the
languages that we discussed in the reference model.

Regarding the dimension of notation, HyperJ has a dedicated specification
(more like a configuration) language to express certain compositions among
the identified concerns.

A hypermodule specification describes a particular integration of the units
pertaining to some selection of concerns. It identifies hyperslices that are to be

0) package project.tests : Feature.Verification
1) operation check : Feature.Check

Listing 2.36 Two simple concern mappings
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integrated in terms of the concerns and specifies integration relationships. A
hypermodule is defined as follows:

A hyperslice (line 1) is a selection of the relevant concerns that need to be inte-
grated into the hypermodule. The relationships clause (line 5) expresses how
the units that implement a concern (i.e. implementation artifacts) are effec-
tively integrated. In general, there is always an overall (main) integration rela-
tionship specified and other types of relationships can refine that. There are
three types of main integrations relationships:

• mergeByName: the units in the hyperslices that have the same name
are integrated into a new unit that merges both.

• nonCorrespondingMerge: the units in the hyperslices that have the
same name are not integrated into a new unit.

• overrideByName: the units in the hyperslices that have the same name
are integrated in the sense that the last unit in the relation overrides the
previous ones. Overriding only affects methods. If classes are com-
bined by overriding, then their corresponding methods override.

Note that these integration strategies, considering the dimension of composi-
tion, explicitly express a sort of custom aspect-aspect composition (as aspects
are implemented by classes), and also custom advice composition. For
instance, if methods have the same name in the hyperslices, they will be
"merged" into one method.

0) hypermodule <<hypermodulename>>
1)   hyperslices:
2)     <<dimensionName1>>.<<concerName1>>,
3)     <<dimensionName2>>.<<concerName2>>,
4)     ...
5)   relationships:
6)     <<mergeByName or nonCorrespondingMerge or
7)       overrideByName>>;
8)     <<other relationships>>
9) end hypermodule;

Listing 2.37 A hypermodule specification
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There are other, special types of relationship in HyperJ that may correspond to
certain design alternatives in our model. The relationship bracket allows to
integrate methods similarly to the before and after advice constructs in the
reference model. The relationship order specifies the merging order of meth-
ods that are integrated by a merge relationship. To do so, it specifies a partial
ordering on methods. From this perspective, one might consider that the rela-
tionship order corresponds to advice ordering in our reference model.
However, it is important to note that this relationship expresses an ordering
among the methods to be integrated by a merging relationship and not by the
bracket relationship (i.e. advices). In other words, it does not correspond to the
advice ordering construct of the reference model.

The interested readers can find more information about HyperJ in [34].

2.9 Background on the Compose* language
In this section, we present the language constructs of the aspect-oriented
language Compose*. Compose* is implemented on .NET platform and
founded on the Composition Filter model. (The Composition Filter model is
originated from the Sina language [3].) In sections 2.9.1 and 2.9.2, we explain
the concepts of the Composition Filter (CF) model. Section 2.9.1 and 2.9.2 are
adapted from [8]. Section 2.9.3 presents and discusses the language constructs
of Compose* with respect to the previously introduced reference model.

2.9.1 Concern Instance = Object + Filters
The CF model is a modular extension to the conventional object-based model
[37] used by programming languages such as Java, C++, and Smalltalk, as well
as component models such as .NET, CORBA, and Enterprise JavaBeans. The
core concept of this extension is the enhancement of conventional objects by
manipulating all sent and received messages. This allows expressing many
different behavioral enhancements since in an object-based system all the
externally visible behavior of an object is manifest in the messages it sends and
receives. Figure 2.8 illustrates this extension by "abstracting" the implementa-
tion object with a layer that contains filters for manipulating sent and received
messages. These filters are grouped into subcomponents called filter modules.
Filter modules are the units of reuse and instantiation of filter behavior. In addi-
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tion to the specification of filters, the filter modules may provide some execu-
tion context for the filters.

Figure 2.8 Simplified representation of concern instances with filters

The filters define enhancements to the behavior of objects. Each filter specifies
a particular inspection and manipulation of messages. Input filters and output
filters can manipulate messages that are respectively received and sent by an
object. After the composition of filter modules and filters, received messages
must pass through the input filters and be sent through the output filters.

The enhanced object, which we refer to as the implementation object, may be
defined in any object-based language, given the availability of proper tool
support for that language. The main requirement is that the object offers an
interface of available methods. Two types of methods are distinguished: regu-
lar methods and condition methods (conditions for short). Regular methods
implement the functional behavior of the object. They may be invoked through
messages if the filters of the object allow this. Conditions must implement side-
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effect free Boolean expressions that typically provide information about the
state of the object. 

Conditions serve three purposes:

1. They offer an abstraction of the state of the implementation object,
allowing filters to consider only relevant states.

2. They allow filters to remain independent of the implementation details
of the implementation object. This has the additional benefit of mak-
ing the filters more reusable.

3. Conditions can be reused by multiple filter (modules) and concerns.

In summary, conditions enforce the separation of the state abstraction and the
message filtering concerns.

2.9.2 Message Processing
We explain the process of message filtering with the aid of Figure 2.9. The
description focuses on input filters, but output filters work in exactly the same
manner. In Figure 2.9, three filters, A, B, and C, are shown. We assume sequen-
tial composition of these three filters. Each filter has a filter type and a filter
pattern. The filter type determines how to handle the messages after they have
been matched against the filter pattern. The filter pattern is a simple, declara-
tive expression to match and modify messages. Typically, messages travel
sequentially along the filters until they are dispatched. Dispatching here means
either to start the execution of a local method or to delegate the message to
another object.

Figure 2.9 illustrates how a message is rejected by the first filter (A) and
continues to the subsequent filter (B). At filter (B) it matches immediately, and
is modified. Then the message continues to the last filter (C). In the example,
at the last filter, the message matches and is then subject to a dispatch. 

Each filter can either accept or reject a message. The semantics associated with
acceptance or rejection depend on the type of the filter. Typically, these are the
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manipulation (modification) of the message or the execution of certain actions.
Examples of predefined filter types are: 

• Dispatch. If the message is accepted, it is dispatched to the current tar-
get of the message; otherwise the message continues to the subsequent
filter (if there is none, an exception is raised) [2].

• Substitute. Is used to modify (substitute) certain properties of mes-
sages explicitly.

• Error. If the filter rejects the message, it raises an exception; other-
wise the message continues to the next filter in the set [2]. 

• Wait. If the message is accepted, it continues to the next filter in the
set. The message is queued as long as the evaluation of the filter
expression results in a rejection [6, 7].

• Meta. If the message is accepted, the message is reified and sent as a
parameter of a new message to a named object; otherwise the message
just continues to the next filter. The object that receives the message
can observe and manipulate the reified message and reactivate its exe-
cution [4]. 

Figure 2.9 An intuitive schema of message filtering
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2.9.3 Compose* Language
This section presents and discusses the language constructs of Compose* with
the respect to the reference model: we map each language construct to the
concepts of the reference model.

To explain the language constructs of Compose*, we present a simple concern
specification in Listing 2.38. 

The concern construct is the main unit of modularization to represent concerns
in Compose*. Listing 2.38 starts with the concern specification of
CreditConcern. The concern construct corresponds to the container unit

0) concern CreditConcern {
1)   filtermodule TakeCredits {
2)     externals
3)       credits : Jukebox.Credits = 
4)                       Jukebox.Credits.instance();
5)     conditions
6)       enoughCredits : credits.enoughCredits();
7)     inputfilters
8)       check : Error = { enoughCredits => [*.*] ,
9)                                  True ~> [*.play] };
10)       withdraw : Meta = { True => [*. play] 
11)                                     credits.withdraw }
12)   }
13)
14)   superimposition {
15)     selectors
16)       classes = { Class | isClassWithName (Class,
17)                           ’Jukebox.Jukebox ’) };
18)     filtermodules
19)       classes <- TakeCredits ;
20)     }
21)   }
22)
23)   implementation in Java by CreditConcernImpl as 
24)                                CreditConcernImpl.java{
25)      class CreditConcernImpl{ ... }
26)   }
27) }

Listing 2.38 An example concern specification in Compose*
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concept of the reference model, as it encapsulates the weaving specification
and the crosscutting behavior to be woven, without providing context informa-
tion for the encapsulated units. A concern specification modularizes three types
of language concept: filter module (line 1), and superimposition (line 14)
specifications and implementation.

Filter modules are the units of reuse and instantiation of crosscutting behavior.
Lines 1-12 of Listing 2.38 presents a filter module specification. The filter
module construct corresponds to the aspect concept of the reference model,
more precisely, to the context unit concept: it contains the specification of
filters, and may also provide some execution context for the filters. The execu-
tion context can be given by two types of declarations: internals and externals.
Internals are objects pertaining to the filter module, while externals are refer-
ences to instances created outside the filter module and concern, that are used
for representing shared state. Line 3 of Listing 2.38 shows the external decla-
ration credits that is an instance of the type Jukebox.Credits. In addition, the filter
module construct may contain condition declarations. A condition declaration
declares a condition by its name and maps it to a method. This method must
implement side-effect free Boolean expressions. Typically, conditions provide
runtime information about the state of an object. For instance, line 5 of Listing
2.38 shows the condition declaration enoughCredits, that is mapped to the
method enoughCredits() and executed on the external credits.

The next part of the filter module specification is the declaration of input and
output filters. Input filters manipulate the incoming messages received by the
implementation object, while output filters manipulate the outgoing messages
sent by the implementation object. Therefore, Compose* deals with two kinds
of behavioral join point type: message reception and method call (i.e. passing
a message). 

The filter construct corresponds to the dedicated advice unit of the reference
model, as filters are the dedicated constructs to represent the crosscutting
behavior in Compose*. Regarding the dimension of notation, a filter is a
declarative, non-Turing complete, dedicated unit concept of the reference
model. (However, the Meta-filter can point to a Turing-complete behavior
specification, see also on page 77.) As we discussed in the previous section,
there are various types of filters. Lines 8-11 of Listing 2.38 shows the declara-
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tion of an Error and a Meta-filter. The declaration of a filter starts with an iden-
tifier, that is followed by a colon and the type of the filter. The filter is initial-
ized with the filter pattern between the curly braces. 

A filter pattern consists of one or more filter elements, connected with the
sequence composition operator ’,’. A filter element consists of a condition, an
inclusion (=>) or exclusion (~>) operator and a matching expression:
<condition> =>|~> <matching expression>. For instance, in the filterement in line
8, the condition enoughCredits is composed with the matching expression [*.*]
via the inclusion operator (=>).  The semantics of a filterelement are that the
matching expression is evaluated only if the condition on the left side is eval-
uated to true. The matching expression specifies a method (signature) pattern;
using the inclusion operator, the filter accepts (matches) every message that
corresponds the given method pattern. Using the exclusion operator, the filter
accepts every message but the ones that correspond to the given method
pattern. Hence, the inclusion and exclusion operators are also part of the match-
ing expression.  In our example, this means that the first filter element will
accept every message if the enoughCredits is true.

As we discussed, a condition abstracts a state in a system; therefore, the condi-
tion construct corresponds to the dynamic condition concept of the reference
model. The matching expression describes the properties, such as name,
target, of the shadow point of the designated join point. Hence, the matching
expression corresponds to the structural join point matching pointcut
construct of the reference model. The complete filter element (including the
matching expression) corresponds to the message reception pointcut when
declared in the input filterset and method call pointcut when declared in the
output filterset. 

The semantics of the sequence composition operator (’,’) between the filter
elements are similar to a conditional OR - when the filter element on the left
side matches, the whole expression is satisfied, and no further filter elements
should be considered. (Thus, the complete filter specification in line 8-9 will
only accept the message play if enoughCredits is true, any other message is
always accepted.) The sequence composition operator corresponds to the
pointcut composition operator of the reference model. If the message does not
match with any of the filter elements, and has reached the end of the filter
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elements, it yields the reject semantics of the given filter type. Otherwise, the
message does match and it yields the accept semantics of the given filter type.
The filter declarations in the filtersets are composed with the filter composi-
tion operator ’;’. The filter composition operator expresses the sequental
composition of filters in a filterset; hence, it corresponds to the advice ordering
composition construct of the reference model. It also expresses implicitly the
composition of filter elements between the filter specifications; for this reason,
it also corresponds to the pointcut composition operator construct of the refer-
ence model.

The Meta-filter type has a special semantics among the predefined filter types:
it reifies the message that is matched by its filter specification, and sends it as
a argument in a method call on an instance of an ACT (AdviCe Type) class. An
ACT class is a regular object-oriented class with methods that take an instance
of the type ReifiedMessage in their parameter. For instance, lines 10-11 in List-
ing 2.38 show an example of Meta filter specification. If the incoming message
is play, the filter withdraw will reify and pass it as an argument in the method

call withdraw on an instance of JukeBox.Credits. The control flow continues by
the execution of the method withdraw, in the context of a credits object. (See
Listing 2.39 for more details.) By calling the method resume() on an instance of
a refied message in an ACT method, the execution of the reified message can
be resumed, similarly as the proceed keyword resumes the execution of the
intercepted event in AspectJ. This means that the ACT class and ACT method
correspond to the aspect and around advice concepts of the reference model.
They are represented, respectively, by the regular class and (Turing-complete)
method constructs in the dimension of notation). In this context, the Meta-
filter acts as separate binding specification of the reference model, as it binds

0) class Credits{
1)     private int credits = 0;
2)     ..
3)
4)     public void withdraw ( ReifiedMessage m) {
5)        credits --;
6)    m.resume();
7)  }
8) }

Listing 2.39 An example ACT (AdviCe Type) class 
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an ACT method and class to a pointcut which is formulated by the filter
elements of the meta filter. 

The next part of the concern specification is the superimposition clause. The
superimposition clause consists of selector declarations and binding specifi-
cations. Line 16 in Listing 2.38 shows an example selector declaration. The
selector classes uses a logic variable, Class and a predicate, isClassWithName in
its declaration. This predicate will select the class Jukebox.JukeBox and binds it
to the variable Class; practically, when the selector classes is referred to, it will
refer to the class Jukebox.JukeBox11. Selectors are predicate based queries that
designate program elements, such as packages, classes, methods and fields.
Hence, both the selector construct and the predicates used in a selector expres-
sion correspond to the structural join point matching pointcut concept of the
reference model. 

The selector declarations are followed by the filter module binding specifica-
tions in the superimposition clause. The filter module binding specification
construct corresponds to the separate binding specification concept of the
reference model, as it superimposes a given filtermodule on a set of classes
designated by a selector. This means that a new instance of the superimposed
filtermodule is associated with each new instance of the designated classes, and
each incoming and outgoing message is filtered by the superimposed filter-
module instances. For instance, line 19 in Listing 2.38 shows an example of the
filter module binding specification: the filtermodule TakeCredits is bound to the
selector classes; hence, TakeCredits is superimposed on the class
JukeBox.JukeBox.

Figure 2.10 shows the discussed mapping of the language constructs of
Compose* to the reference model. For more information about Compose*, we
refer to [8].

11.Note that the variable Class is a logic variable that may refer to not only one, but multiple
program elements as well. The subsection Structural Join Point Matching Pointcuts in sec-
tion 2.5.1 provides a detailed discussion about the selector construct of Compose*.
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Figure 2.10 Mapping the language Compose* to the reference model
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2.10 Discussion
It is important to note that we do not consider this model as a final reference
model of aspect-oriented languages. It is more like a snapshot of the state of the
art aspect-oriented languages. This model will evolve further as the world of
these languages is not closed and continuously evolves. We expect that the
evolution of these languages can be expressed by extending (e.g. specializing)
the design dimensions of our model rather than replacing them.

In general, the principles of aspect-oriented programming can be applied to
languages with different programming paradigms, such as object-oriented,
procedural and logic programming. In this work, we focus only on aspect-
oriented languages that are extending object-oriented languages, such as Java
or C#. On the other hand, parts of this reference are applicable to aspect-
oriented languages founded on other paradigms. For instance, the join point of
a method call in an object-oriented language and a procedural language will
likely have similar (e.g. name of the method) and different properties (e.g. only
the object-oriented language will have a reference to the target object). 

In this chapter, we have discussed various language concepts in the domain of
aspect-oriented programming. However, we were mainly focusing on the
concepts that are related to aspect-oriented languages. Many AOP concepts
remained still undiscussed in this study. These concepts, e.g. wrappers, join
point instrumentation, are related to the execution model of aspect-oriented
languages. These concepts are discussed in [12] that contains a set of surveys
on the execution models of aspect-oriented languages. We believe that a simi-
lar study to ours can be done to explore the design dimensions of the current
execution models, as well as the relationships between the concepts of the
language and execution models.

A construct of a concrete language may fulfil the role of more than one
language concepts of the reference model. On the other hands, one language
concept of the reference model may by realized jointly by more constructs of a
concrete language. That is, there might be cases when there is no one-to-one
mapping between the constructs of a language and the reference model.

We also observed that there are significant relationships between the discussed
language concepts of the reference model. These relationships can be either
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conceptual (mandatory) or alternative12, forced by a choice of an alternative
of a given language concept. For example, there is a conceptual dependency
between the join point and pointcut concepts: join points are designated by
pointcuts. This means that there should be a corresponding pointcut designator
for each type of join point, otherwise the join point cannot be designated and
used. Similarly, the type of a join point determines the type of the advices that
can be executed on that join point. In practice, this means that when one devel-
ops a join point model, her or she should be aware of the possible type of cross-
cutting behavior that she intends to perform at a particular type of join point.
An alternative relationship occurs, for example, when the designer decides to
use implicit aspect-instantiation in her aspect-oriented language. A conse-
quence is that she may need to have a construct that supports the parametriza-
tion of aspects, which is provided by default in case of using explicit aspect
instantiation. However, in this relationship, the first language concept (implicit
aspect instantiation) does not require the presence of the second language
concept to its work, as opposed to the pointcut-join point relationship, where
the join point cannot be used without the presence of the pointcut designator.
We believe that an extensive study of the relationships between the language
concepts would contribute positively to the current reference model.

2.11 Related Work
[29] investigates the composition concepts of object-oriented languages,
AspectJ and HyperJ. It has a different analysis model as compared to our
approach: the main dimension of the analysis model is composition and the
subdimensions are, among others, composition scope, identification and
deployment, for instance. 

In [26], the authors propose a classification scheme, called Generic Model for
AOP (GEMA), as a set of essential and optional features of the current AOP
systems. We consider the identified features of GEMA important; however our
reference model provides a broader view on the language concepts of the exist-
ing aspect-oriented languages. Note that the goals of [26] and our work were
also different: the intention of the authors of [26] was to provide a classification
scheme of AOP systems, while we focused on exploring the design space of
the concepts of the state-of-the-art aspect-oriented languages.

12.We use the terminology of Feature-Oriented Domain Analysis [21] here.
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[12] presents a collection of surveys of a set of aspect-oriented languages, and
their execution model based on a pre-defined analysis model. The pre-defined
analysis model consists of a set of questions, such as "What are the possible
join points? Static? Dynamic?, What are the possible pointcuts?", etc. related
to the main concepts of AOP languages. Each language in the survey is
analyzed in terms of this pre-defined analysis model. As a result, [12] consists
of a set of individual surveys of various AOP languages. We built-up our refer-
ence model partially based on the language surveys of this document, as well
as by analyzing other languages that were not part of [12]. As compared to the
analysis model of [12], we chose a wider and more generic set of dimensions.
Along these dimensions, we identified and refined possible design alternatives
based on the key properties of the language concepts of the state-of-the-art
aspect-oriented languages. As a result, our analysis depicts a generic reference
model of AOP languages: it presents the common, as well as the distinctive
properties of the design alternatives of the AOP language concepts. 

2.12 References

[1] AKSIT, M., Ed. Proc. 2nd Int’ Conf. on Aspect-Oriented Software Devel-
opment (AOSD-2003) (Mar. 2003), ACM Press.

[2] AKSIT, M., BERGMANS, L., AND VURAL, S. An object-oriented language-
database integration model: The composition-filters approach. In Proc.
7th European Conf. Object-Oriented Programming (1992), O. L. Mad-
sen, Ed., Springer-Verlag Lecture Notes in Computer Science, pp. 372–
395.

[3] AKSIT, M., AND TRIPATHI, A. Data abstraction mechanisms in SINA/ST.
In 3rd Conf. Object-oriented Programming, Systems, Languages, and
Applications (OOPSLA) (1988), ACM, pp. 267–275.

[4] AKSIT, M., WAKITA, K., BOSCH, J., BERGMANS, L., AND YONEZAWA, A.
Abstracting object-interactions using composition-filters. In Object-
Based Distributed Processing, R. Guerraoui, O. Nierstrasz, and
M. Riveill, Eds. Springer-Verlag Lecture Notes in Computer Science,
1993, pp. 152–184.
82



REFERENCES
[5] AL, N. M., AND RASHID, A. A state-based join point model for aop. In
VAR 2005: Workshop on Views, Aspects and Roles (2005).

[6] BERGMANS, L. Composing Concurrent Objects. PhD thesis, University of
Twente, 1994.

[7] BERGMANS, L., AND AKSIT, M. Composing synchronisation and real-time
constraints. Journal of Parallel and Distributed Computing 36 (1996),
32–52.

[8] BERGMANS, L., AND AKSIT, M. Principles and design rationale of compo-
sition filters. In Aspect-Oriented Software Development, R. E. Filman,
T. Elrad, S. Clarke, and M. Aksit, Eds. Addison-Wesley, Boston, 2005,
pp. 63–95.

[9] BOBROW, D. G., DEMICHIEL, L. G., GABRIEL, R. P., KEENE, S. E., KICZA-
LES, G., AND MOON, D. A. Common lisp object system specification. SIG-
PLAN Not. 23, SI (1988), 1–142.

[10] BONÉR, J. What are the key issues for commercial AOP use: how does
AspectWerkz address them? In Proc. 3rd Int’ Conf. on Aspect-Oriented
Software Development (AOSD-2004) (Mar. 2004), K. Lieberherr, Ed.,
ACM Press, pp. 5–6.

[11] BOUCKÉ, N., AND HOLVOET, T. State-based join-points: Motivation and
requirements. In Dynamic Aspects Workshop (Mar. 2005), R. E. Filman,
M. Haupt, and R. Hirschfeld, Eds., pp. 1–4.

[12] BRICHAU, J., AND HAUPT, M. Survey of aspect-oriented languages and
execution models. Tech. Rep. AOSD-Europe-VUB-01, AOSD-Europe,
May 2005.

[13] COLYER, A. AspectJ. In Aspect-Oriented Software Development, R. E.
Filman, T. Elrad, S. Clarke, and M. Akc sit, Eds. Addison-Wesley, Bos-
ton, 2005, pp. 123–143.

[14] CONSTANTINIDES, C., BADER, A., AND ELRAD, T. An aspect-oriented
design framework for concurrent systems. In Lopes et al. [25].
83



CHAPTER 2 A REFERENCE MODEL OF ASPECT-ORIENTED LANGUAGES
[15] DALAGER, C., JORSAL, S., AND SORT, E. Aspect oriented programming in
JBoss 4. Master’s thesis, IT University of Copenhagen, Feb. 2004.

[16] DURR, P., STAIJEN, T., BERGMANS, L., AND AKSIT, M. Reasoning about
semantic conflicts between aspects. In EIWAS 2005: 2nd European Inter-
active Workshop on Aspects in Software (2005).

[17] FILMAN, R. E., AND FRIEDMAN, D. P. Aspect-oriented programming is
quantification and obliviousness. In Aspect-Oriented Software Develop-
ment, R. E. Filman, T. Elrad, S. Clarke, and M. Akc sit, Eds. Addison-
Wesley, Boston, 2005, pp. 21–35.

[18] FRADET, P., AND SÜDHOLT, M. An aspect language for robust program-
ming. In Lopes et al. [25].

[19] FRAINE, B. D., VANDERPERREN, W., SUVEE, D., AND BRICHAU, J. Jump-
ing aspects revisited. In DAW: Dynamic Aspects Workshop (Mar. 2005),
R. Filman, M. Haupt, and R. Hirschfeld, Eds.

[20] HANENBERG, S., AND UNLAND, R. Parametric introductions. In Aksit [1],
pp. 80–89.

[21] KANG, K. C., COHEN, S. G., HESS, J. A., NOVAK, W. E., AND PETERSON,
A. S. Feature oriented domain analysis (FODA) feasibility study. Tech.
Rep. CMU/SEI-90-TR-21, Software Engineering Institute, CMU, Nov.
1990.

[22] KAWAUCHI, K., AND MASUHARA, H. Dataflow pointcut for integrity con-
cerns. In AOSDSEC: AOSD Technology for Application-Level Security
(Mar. 2004), B. De Win, V. Shah, W. Joosen, and R. Bodkin, Eds.

[23] KICZALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J., AND
GRISWOLD, W. G. An overview of AspectJ. In Proc. ECOOP 2001, LNCS
2072 (Berlin, June 2001), J. L. Knudsen, Ed., Springer-Verlag, pp. 327–
353.

[24] LOPES, C. V. D: A Language Framework for Distributed Programming.
PhD thesis, College of Computer Science, Northeastern University, 1997.
84



REFERENCES
[25] LOPES, C. V., BLACK, A., KENDALL, L., AND BERGMANS, L., Eds. Int’l
Workshop on Aspect-Oriented Programming (ECOOP 1999) (June
1999).

[26] MEHNER, K., AND RASHID, A. Towards a generic model for aop (GEMA).
Tech. Rep. CSEG/1/03, Computing Department, Lancaster University,
UK, 2003.

[27] ORLEANS, D., AND LIEBERHERR, K. DJ: Dynamic adaptive programming
in Java. In Metalevel Architectures and Separation of Crosscutting Con-
cerns 3rd Int’l Conf. (Reflection 2001), LNCS 2192 (Sept. 2001),
A. Yonezawa and S. Matsuoka, Eds., Springer-Verlag, pp. 73–80.

[28] ORLEANS, D., AND LIEBERHERR, K. J. DemeterJ. Tech. rep., Northeastern
University, 2001.

[29] OSTERMANN, K. Towards a composition taxonomy. Tech. Rep. CT SE 2,
Siemens AG, 2001.

[30] OSTERMANN, K., AND MEZINI, M. Conquering aspects with Caesar. In
Aksit [1], pp. 90–99.

[31] RAJAN, H., AND SULLIVAN, K. Aspect language features for concern cov-
erage profiling. In Proc. 4rd Int’ Conf. on Aspect-Oriented Software
Development (AOSD-2005) (Mar. 2005), P. Tarr, Ed., ACM Press,
pp. 181–191.

[32] SPINCZYK, O., GAL, A., AND SCHRÖDER-PREIKSCHAT, W. AspectC++:
An aspect-oriented extension to the C++ programming language. In Pro-
ceedings of the Fortieth International Conference on Tools Pacific
(2002), Australian Computer Society, Inc., pp. 53–60.

[33] SUVÉE, D., AND VANDERPERREN, W. JAsCo: An aspect-oriented
approach tailored for component based software development. In Proc.
2nd Int’ Conf. on Aspect-Oriented Software Development (AOSD-2003)
(Mar. 2003), M. Aksit, Ed., ACM Press.

[34] TARR, P., AND OSSHER, H. Hyper/J user and installation manual. Tech.
rep., IBM T. J. Watson Research Center, 2000.
85



CHAPTER 2 A REFERENCE MODEL OF ASPECT-ORIENTED LANGUAGES
[35] URBAN, M., AND SPINCZYK, O. AspectC++ Language Reference. pure-
systems GmbH, May 2005.

[36] VANDERPERREN, W., SUVÉE, D., CIBRÁN, M. A., AND FRAINE, B. D.
Stateful aspects in JAsCo. In Software Composition (2005), T. Gschwind,
U. Aßmann, and O. Nierstrasz, Eds., vol. 3628 of Lecture Notes in Com-
puter Science, Springer, pp. 167–181.

[37] WEGNER, P. Dimensions of object-based language design. In OOPSLA
’87: Conference proceedings on Object-oriented programming systems,
languages and applications (New York, NY, USA, 1987), ACM Press,
pp. 168–182.

[38] XEROX CORPORATION. The AspectJ programming guide.
86



Chapter 3

Utilizing Design Information

for Evolvable Pointcuts

Traditionally, in aspect-oriented languages, pointcut designators select join points
of a program based on lexical information such as explicit names of program
elements. However, this reduces the adaptability of software, since it involves too
much information that is hard-coded, and often implementation specific. We claim
that this problem can be reduced by referring to program units through their design
intentions. Design intention is represented by annotated design information, which
describes for example the behavior of a program element or its intended meaning.
In this paper, we analyze four techniques that are regularly used in state-of-the-art
object-oriented languages in associating design information with program
elements. Also, the usage of design information in the weaving process of aspect-
oriented languages is illustrated and their deficiencies are outlined. Accordingly,
we formulate requirements for the proper application of design information in
aspect-oriented programming. We discuss how to use design information for the
superimposition of aspects, and how to apply superimposition to bind design infor-
mation to program elements. To achieve this, we propose language abstractions
that support semantic composition: the ability to compose aspects with the elements
of the base program that incorporate certain design information. We demonstrate
the application of design information to improve the reusability of aspects.1

3.1 Introduction and Motivation
The process of software development generally consists of refinement of
conceptual knowledge towards an executable program. During this process,

1. This chapter is based on work published in [22] and [23].
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"ideas" or design artifacts are mapped onto implementation artifacts. Typi-
cally, the actual implementation contains the artifacts that are necessary for
execution. Consequently, certain conceptual knowledge that expresses the
intentions of a design is not explicitly represented in the final program. In this
chapter, we analyse the impact of this information-loss with respect to the
pointcut expression. 

In aspect-oriented languages, a pointcut designator expression specifies a
composition interface where the behaviour of a (sub)program can be modified
or enhanced by composing with one or more advices that represents the behav-
iour of a crosscutting concern. Although design information2 is not necessary
for correct execution, it is generally required to avoid fragility of pointcuts with
respect to changes in the implementation. The lack of explicit design informa-
tion in the implementation forces programmers to express the design informa-
tion in other ways, for example based on syntactic conventions. In this chapter,
we argue that specifying pointcuts by designating the syntactic properties of
artifacts (and perhaps the state) of the program only, can be too restrictive for
evolving programs. For this purpose we present a linguistic mechanism that
can be used to express design properties in the pointcut specifications. We also
evaluate this mechanism with respect to the recent proposals along this direc-
tion. 

This chapter is structured as follows: section 3.2 presents an analysis of the
various ways programmers use to encode design information in a program.
Section 3.3 proposes a language construct for attaching design information to
the desired places in programs and for referring to this design information in
pointcut specifications. In section 3.4 we present an implementation and appli-
cation of the proposed language construct in the aspect-oriented language
Compose*. Section  3.5 provides details about the implementation. Section 3.6
discusses the related work. Section 3.7 discusses the consequences of the tech-
niques we propose in this chapter. Section 3.8 provides an assessment of our
approach in terms of software quality factors, such as comprehensibility,
predictability, adaptability, evolvability and modularity. Finally, section 3.9
concludes the chapter.

2. In this work, we consider a piece of design information as a sort of property, since it de-
scribes the intentional meaning (i.e. design intention) of a program unit.
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3.2 Problem Analysis
Programmers use various techniques to express design intentions in the form
of design information attached to certain program elements. In this section, we
present and analyse four commonly used techniques for representing design
information in state-of-the-art object-oriented languages, such as Java or C#.
We also illustrate how AOP languages (may) utilize design information in the
pointcut expressions. In the analysis, we show that some of these techniques
result in fragile programs especially with respect to evolving requirements. The
analysis concludes with a set of requirements for using design information in
aspect-oriented languages

3.2.1 Naming Patterns
Technique: A common method for expressing design information is to use
naming conventions or stylistic naming patterns [24] in the identifiers of a
program. A typical example in Java is illustrated by the following code:

This example shows a very simple convention in Java: a method that queries a
given instance variable starts with the ’get’ prefix, while the updater method
has the ’set’ prefix. There are other well-known naming patterns, such as the
add and remove prefixes for maintaining the items of a collection, or the test
prefix used by the test fixtures of JUnit [3]. 

1) public class Customer {
2) private String firstName;
3) private String lastName;
4) private String email;
5) …
6) public String getFirstName(){ return firstName;}    
7) public void setFirstName(String fname) {  
8)      firstName=fname;
9)   }
10) …
11) public String getEmail() { return email; }   
12)  public void setEmail(String nemail) {  email=nemail; }
13)  …
14) }

Listing 3.1 An example of naming patterns
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Programmers may use these patterns for the sake of more organized, compre-
hensible code, but there are frameworks, e.g. JavaBeans [4] or JUnit, which in
fact rely on these naming patterns for proper operation. In the latter case
naming patterns are not only for expressing design information but they also
are explicitly referred to (i.e. they act as 'hooks') in those frameworks. More
discussion about naming patterns can be found in [24].

Possible use: The following example shows how naming patterns can be used
in combination with wildcards in a pointcut designator expression3:

The example in Listing 3.2 shows two pointcuts. The first one designates the
execution of each method that starts with the prefix ’get’ within the Customer
class. The second pointcut does the same thing with the ’set’ prefix. The inten-
tion of the first pointcut is to designate the execution of methods that query the
state of a Customer instance, while the second one designates the execution of
'update' methods. Note that both pointcuts rely on the disciplined application
of the naming patterns.

Discussion: In this example, certain properties are hard-wired into the signa-
tures of the base code and the weaving is done based on these signatures.
However, programmers need to keep in mind the coding conventions: (a) using
the ’set’ prefix to denote the behavior of the method for all setter methods, and
(b) avoiding incidental naming ambiguities, such as settle() and settings() in this
case. This phenomenon has been also identified as the ’arranged pattern prob-
lem’ by Gybels et. al. in [15]. 

The problem stems from the fact that the design information is not separated,
but encoded in the structure - more precisely, in the identifiers - of the program.
We claim that instead of encoding it in the program, design information should

1) pointcut queryMethods():
2)    within (Customer) && execution (public * get*());
3) pointcut updateMethods():
4)    within (Customer) && execution (public void set*(..));

Listing 3.2 An example of combining pointcuts with naming patterns

3. We use AspectJ[19, 11] notation because of its wide use in practice.
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be explicitly associated with program units via dedicated language constructs.
We will refer to this requirement as separability of properties. 

The technique of naming patterns has another deficiency which is caused by
the fact that it is possible that a unit has to participate in more than one pattern.
As an example, consider the member variable that stores the email address in
Listing 3.1. Assume that two frameworks, independently from each other, have
to be coupled with this variable. The first framework deals with persistence in
the whole system, that is, it stores the email address in a database. The second
framework is used for encrypting textual data; in this case, it encrypts the email
address. To express these dependencies, we might use a naming pattern with
an identifier, such as private String persistent_encrypted_email. However, this
syntactic solution has several problems. The more patterns are applied, the
more juxtaposition of textual identifiers is required in the signatures. In addi-
tion, the programmers of a framework need to be aware of the fact that more
properties may appear in a signature, not only those properties that are specific
to their own framework.

As the example shows, it is an important capability to handle not only single
but also multiple pieces of design information attached to the same program
unit. We will refer to this requirement as multiple properties.

3.2.2 Structural Patterns
Technique: When using structural patterns, the software engineer adapts the
structure of the program, without affecting its behavior, for the sole purpose of
attaching design information. For example, a frequently applied technique in
Java is to use marker interfaces [24]. A marker interface is an interface decla-
ration that does not contain any signature declarations. Consider the following
example:

In this example, an (empty) marker interface PersistentRoot is declared, the
Customer class then implements this interface. This does not change the behav-
ior of the Customer class, but only 'marks' the class as being a 'PersistentRoot'.

1)   public interface PersistentRoot {}
2)
3)   public class Customer implements PersistentRoot{ … }

Listing 3.3 An example of a marker interface
91



CHAPTER 3 UTILIZING DESIGN INFORMATION FOR EVOLVABLE POINTCUTS
Typical examples of marker interfaces in Java are the java.io.Serializable,
java.lang.Cloneable and java.util.EventListener interfaces. 

Possible use: Marker interfaces in AOP languages can be designated using the
pointcuts this or target:

Discussion: Other examples of structural patterns that can be used to attach a
certain meaning to an element of a program, are dummy methods (i.e. methods
that are not intended to be called), dummy variables and dummy arguments
with specific types to indicate a meaning. Such patterns can be used by pointcut
designators to identify certain join points within a program. 

A difference between structural patterns and naming patterns is that in the
latter, the semantic properties are hard-wired purely into the identifiers. This
makes them very difficult to maintain, e.g. adding multiple properties is prob-
lematic. This does not necessarily apply to all structural patterns, for example
a class can implement more than one interface, so it is possible to attach multi-
ple properties via marker interfaces. One problem with marker interfaces is that
they can be applied only to classes. 

A general problem of both structural and naming patterns is that they statically
attach design information to classes. This implies that the information will be
applied in every application that (re-)uses these classes, whereas this might not
be desirable: for example, PersistentRoot is a property that tends to be specific
to an application, not to the characteristics of the class. (That is, a class is not
necessarily persistent in every application.) It is also possible that a specific
property can be used by different frameworks by coincidence, and they inter-
pret the property in different ways. To solve this problem, we think that design
information should be dynamically attachable to units and be configurable
according to the needs of different applications. We will refer to this require-
ment as late binding.

1) pointcut queryMethods():
2)    this(PersistentRoot) && execution (public * get*());

Listing 3.4 An example of combining pointcuts and marker interfaces
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3.2.3 Annotations
Technique: The .NET platform (supporting various languages) has annota-
tions (also called custom attributes) [5] to bind design information to a range
of language constructs. The metadata facility of Java 1.5 [6] realizes the same
technique. Annotations are defined as first class entities, they can have argu-
ments and various constraints can be applied on them. The following example
shows a definition of an annotation in Java:

@Target is a meta-annotation that constrains the type of the unit to which the
newly defined annotation can be attached. The value of the argument is TYPE,
which means that PersistentRoot can be attached only to classes and interfaces. 

1)    @Target(TYPE);
2)    public @interface PersistentRoot{
3)       public String tableName() default "unassigned";  }
4)

Listing 3.5 An annotation definition in Java

1) @PersistentRoot("CUSTOMERS") (1)
2) public class Customer {   
3)    @Persistent()             (2)
4)    String firstName;
5)    …
6)    @Persistent()             (2)
7)    String email;
8)    
9)    @Query()                  (3)
10)    public String getFirstName(){ return firstName; }
11)
12)    @Update()                 (4)
13)    public void setFirstName(String fname) {  
14)       firstName=fname; 
15)    }
16)    …
17)    @Update()                 (4)
18)    public void setEmail(String nemail) { email=nemail; }
19)    …
20) }

Listing 3.6 Annotations as design information
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The definition of PersistentRoot has one String argument called tableName.
Since a default value is provided, it is not necessary to fill in the argument when
the annotation is used. 

Listing 3.6 illustrates how annotations can be applied to attach design informa-
tion to class Customer, which was presented in Listing 3.1. The annotation
@PersistentRoot (1) is attached to class Customer to indicate that the instances
of this class should be persistent. The annotation @Persistent (2) denotes that
the fields email and firstName of class Customer should be stored as a persistent
variable. The annotation @Query (3) is attached to those methods that do not
change the state of an instance of class Customer, while the annotation @Update
(4) is attached to those methods that cause state change.

Possible use: The idea of defining pointcuts based on annotations is not new;
however, among the current AOP technologies only JBoss [13], AspectWerkz
[10], AspectJ [11] and JasCo [25] support annotations as reference points for
designating join points. For example, the execution of the methods that change
the state of Customer could be designated by the following pointcut in JBoss:

Discussion: The first problem is a that, like naming patterns and marker inter-
faces, annotations are also statically bound to the units that they are attached4

to. 

The second problem with annotations is that they are usually scattered. In other
words, it is possible that an annotation is attached to multiple units over the
whole application. For example, it is quite common that the annotation
@Author("X.Y.") is attached to every class within one or more packages. Meta-
annotations (i.e. annotations attached to the definition of other annotations),
such as the annotation @Retention, are often scattered too. The attachment of
scattered annotations manually is error-prone and should be automatically

1)  <bind pointcut="execution(Customer->@Update(..))">
2)     <interceptor class=… />
3)  </bind>

Listing 3.7 Using annotations in a pointcut designator of JBoss

4.  If the retention policy of an annotation is SOURCE in Java it is discarded by the compiler
and not recorded in the bytecode.
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generated, whenever it is possible. We will refer to this requirement as support
for scattered properties.

3.2.4 Automatically-derived Semantic Information
Technique: As the field of aspect-oriented programming evolves, the need for
more 'expressive' pointcuts becomes apparent. This is illustrated by Kiczales'
keynote in [18]; he argued that the ways to express pointcuts should be as close
as possible to the intention of the designer. This naturally leads to proposals for
expressing pointcuts that do not directly refer to elements within the program
(source), but that refer to those points in the program or the execution of the
program that fulfil a certain property. These join points can only be determined
by reasoning about the semantics of the program and the adopted programming
language. 

Possible use: A well-know example is the primitive pointcut in AspectJ named
cflow(). It selects all the points in the execution of a program that occur between
the entry and exit of one or more join points provided as its argument. Clearly,
this does not refer to the syntax and structure of the program itself. This means
that the patterns in the execution of the program can only be identified by
taking into account the semantics of the programming language. Other exam-
ples of semantic language patterns are discussed in [15]; here, advanced point-
cut expressions can be defined, which can reason about (the execution of) the
program to determine the join points.

All these techniques (i.e. cflow, pointcuts of [15]) have in common that the
pointcut expression is not just referring to the names and structure of the
program, but can only be resolved by reasoning about the semantics of the
language under consideration.

Discussion: Automatically-derived semantic information is used to capture the
intention of the designer by analysing the semantic patterns of a program
(execution). The two inputs to this analysis process are the program itself, and
the semantics/meaning of the programming language involved. However, not
all relevant semantic information/ intentions can be derived from these
sources: certain semantics are defined by the domain and normally not encoded
into the program (as it is not required for the execution itself). We have previ-
ously mentioned the example of the persistence of individual program
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elements; it depends solely on the particular requirements of the application; it
does not affect the behavior of the core functionality itself, and may apply to
both classes and the instance variables individually.

Since certain design information cannot be algorithmically derived, we should
be able to attach domain specific design information as well. We will refer to
this requirement as dealing with domain specific semantics.

Note that naming and structural patterns are not suitable for semantic reason-
ing; however, they can enrich programs with domain specific semantic proper-
ties.

3.2.5 Summary
In the previous sections, we have presented different ways how design infor-
mation can be bound to, or derived from, different units of an application.
Table 3.8 summarizes how the presented techniques support the identified
requirements: 

The columns of this table represents the issues (i.e. requirements) that we iden-
tified in the previous sections, the rows represents the analysed techniques.
Separability of properties requires that instead of encoding in the program,
design information should be distinctly connected to program units via dedi-
cated language constructs. This cannot be achieved by naming and structural
patterns as they encode the design information either in the identifier or the
structure of the program. Annotations are dedicated abstractions to attach
design information to various program elements. Derivation techniques can
also express design information in terms of abstractions that are independent
from the program. Multiple properties (in the second column of Table 3.8)

Table 3.8 Techniques vs. requirements

Separability of 
Properties

Multiple 
Properties

Scattered 
Properties

Late 
Binding

Domain Specific 
Properties

Naming Patterns no no no no yes
Structural Patterns no yes no no yes
Annotations yes yes no no yes
Derived Properties yes yes yes yes no
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ensures that multiple design information can be attached to a certain program
element. Almost every technique satisfy this requirement to certain extent;
however, the solution provided by naming patterns had several problems, as we
discussed in 3.2.1. Scattered properties (in the third column of Table 3.8)
requires that a single design information that is applicable to several program
elements of an application should not be scattered over in the source of the
entire application. Late binding requires that design information should be
dynamically attachable to units and be configurable according to the needs of
different application contexts. Both of these latter two requirements were
supported by only the derivation techniques5. Domain specific properties
ensures that domain specific design information can be assigned to the program
elements of an application. Naturally, this is possible with every technique
except the derivation (semantic reasoning) technique, as the domain specific
design information cannot be derived from the structure of the application, in
that case.

According to the above analysis, the combination of annotations and semantic
reasoning seem to be the ideal solution to represent design information in AOP
languages. However, there are certain problems that need to be addressed to
make these techniques to work:

1. AOP languages need to support explicit pointcut designators that can
refer to annotations6.

2. There must be means by which scattered annotations can be superim-
posed. 

3. There must be means by which the place of annotations can be derived
based on certain rules (e.g. the derivation of annotations can be driven
by semantic reasoning).

4. There must be means to ensure the decoupling of design information
from the base code; i.e. they must not be always statically bound to the
program. 

5. Since the first version of this work, the pointcut language of aspect-oriented languages has
further evolved. At time of writing, a few aspect-oriented languages supports some of these
requirements already.

6. The need for expressing 'semantic pointcuts' was also identified in [21].
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3.3 General Approach
In the previous section, we discussed the requirements and the problems to be
addressed to support the use of design information in aspect-oriented program-
ming. In this section, we will explain our general approach towards those prob-
lems. Figure 3.1 (b) offers an overview of our approach, as compared to the
state-of-the-art aspect-oriented approaches shown in Figure 3.1 (a). In Figure
3.1 (a), the white-coloured shapes show the essential concepts of aspect-
oriented programming, that are relevant to this chapter. The large box at the top
represents the logical program elements of the (base) program. Program
elements can be selected by pointcut specifications. This selection is typically
based on the lexical and structural properties of the program elements or on the
results of a more advanced program analysis techniques (for example, control
flow analysis). The picture illustrates that superimposition is defined based on
the specifications of advices and the corresponding pointcut specifications.

Figure 3.1 (a) a traditional AOP approach; (b) aspect composition through 
semantic reference layer

In Figure 3.1 (b), the grey parts illustrate the additional elements and relations
that we propose in this chapter. The key element of our approach is that, instead
of referring directly to the program, the specification of pointcuts incorporates
references to design information. We aim to select program elements based on
the annotated design information. This is achieved by the design information
reference layer. We use the term semantic composition when the elements of a
composition have been 'collected' by referring to design information. There are
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several ways in which design information (cf. semantic property) may be asso-
ciated with program elements:

– Attach it manually with annotations
– Derive it based on the existence of other design information.
– Attach it through superimposition of possibly crosscutting annotations

(as indicated by the grey dashed arrow between design information
and superimposition in Figure 3.1)

Finally, the figure also illustrates that the connection between superimposition
and advice (i.e. the selection of advice), can be made based on its associated
design information. 

The key benefit of our approach is that it reduces direct dependencies between
the crosscutting concern and the program source. This is realized by introduc-
ing a separate abstraction layer in between, which aims at describing the join
point through specific design information. We consider this approach more
resilient to changes in the program and/or requirements because join points can
now be designated based on the associated design information instead of lexi-
cal and structural information.

3.3.1 Pointcuts with design information
To incorporate design information in the pointcut designation process, we
present two design alternatives here although there might be other possible
solution as well.

As we have shown before, annotations (i.e. custom attributes in .NET) are
considered as extra properties on the signature of a unit. Thus, one simple alter-
native is to extend the type patterns in the pointcut designators with annota-
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tions. For instance, the execution of the methods that change the state of a
persistent class is designated by the following pointcut in AspectJ:

Another possible alternative (line 6-7) could be to use dedicated predicates for
custom attributes, such as the predicate hasAttribute(). This is illustrated by the
second alternative of Listing 3.9.

However, this latter approach is suitable for a unit that can be explicitly refer-
enced in other pointcuts only. For example, in AspectJ, a class can be explicitly
referenced in the context matching target() and this() pointcuts, or a parameter
in the 'args pointcut', while a method as a unit can only be explicitly referenced
through its call or execution. In short, the existing pointcut mechanism of a
language may also influence the way how annotations are referenced in the
pointcuts.

3.3.2 Superimposition 
In this subsection, we discuss the meta-model and the designating language
that plays an essential role in the superimposition of annotations.

Meta-model
To superimpose annotations, it is necessary to know what type of units can
have annotations. The set of possible types varies from language to language,
although there is a small set of units that is common to every object-oriented
language, such as class, method, parameter and member variable (field). For
example, according to the JSR-175 specification [6], we can attach annotations
to the following units in Java: types, fields, methods, parameters, constructors,
local variables, annotations, and packages. Note that types of units that are
specific to an aspect-oriented language, such as the aspect and advice in

1) /* Alternative 1. */
2) pointcut updateMethods():
3)    within(@PersistentRoot *) && execution(@Update * *(..));
4)
5) /* Alternative 2. */
6) pointcut foo(Customer c):
7)    target(c) && hasAttribute(c, @PersistentRoot) && …

Listing 3.9 Alternatives of pointcut referring to annotations
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AspectJ, or concern and filtermodule in Compose* could have annotations as
well, but this is of course not supported by the standard of the base language.

However, the type of the unit is only one property that can be referred to desig-
nate a unit. There are also other important properties that can be used for desig-
nation, such as the visibility, modifier or name of a unit.

Figure 3.2 A part of the meta-model

The superimposition of annotations cannot only be based on the properties of
units but also the relationships between units. For instance, one important rela-
tionship is the aggregation relationship between various units and program
elements. This relationship is used, for example, when an annotation should be
attached to "every field within a given class". Figure 3.2 illustrates a hierarchy
of the program elements and units based on the aggregation relationship
(labelled by the word has). 

There are other important relationships and properties as well. For example, in
Figure 3.2 we indicated two additional types of relationships. The valueType
relationship indicates the type of a field or a local variable (also applicable to
the parameter node). The returnType relationship from the node Type to Method
shows the type of the return value of a method. The full meta-model used in the
superimposition of annotations is discussed in [16].
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The possible properties of units and the relationships between them make up
the static meta-model of the target hierarchy that can be constructed based on
source or byte-code analysis. The meta-model essentially determines the way
of querying the units to which annotations are to be attached.

Specification language for pointcuts
In order to designate certain units, it is also necessary to provide a language that
can express queries on program units based on the properties and relationships
of the meta-model. To express queries on the representation of complex
program structures, the language should be capable of handling nested struc-
tures of heterogeneous types. Predicate-based query languages (e.g. JQuery
[17]) have already been proposed to express such queries. In addition, a predi-
cate-based language can provide features such as unification, recursion and a
built-in reasoning mechanism on properties [15] that significantly improve the
flexibility of a pointcut language. We also believe that a predicate-based
language provides an intuitive use for programmers. For these reasons, we use
a predicated-based language to formulate the queries of program elements
based on the proposed meta-model.

Listing 3.10 shows an example of how an element of the previously discussed
meta-model can be queried in a predicate-based language. In the example, we
use Compose* for illustrating such a predicate-based query language. In
Compose*, a query of program elements can be formulated in the selector
language construct. Every selector has a name (for example, guiComponents),
which is unique within the concern where it is defined. This selector designates
(=) a set that consists of possible values found by the Prolog engine for a vari-
able (GuiType), where the predicates after the '|' puts constraints on these values.
In this example, the first predicate (isNamespaceWithName) binds the name-
space com.myCompany.gui to the GuiNS variable. The second predicate binds
every unit (e.g. interface or class) within the selected namespace to the GuiType
variable. Because of the unification mechanism of Prolog, however, only the
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types that also satisfy the third predicate (isTypeWithAttribute) will be bound to
the GuiType variable.

To resolve such a query, the fact base of the Prolog engine is filled up based on
the repository of a Compose* project; this repository is essentially an instance
of the meta-model that we have discussed previously. 

With respect to the meta-model, the predicate language consists of predicates
that refer to the properties of units (e.g. isClass(C), isClassWithAttribute(Class,
ClassAttribute)) and the relationships between units (e.g.
isSuperClass(SuperClass, SubClass), classHasMethod(Class, Method)). Besides,
we defined "convenience" predicates to express more complex structures
(views) on the meta-model (e.g. inherits(Parent, AnyChild) to check if a class is
indirectly a subclass of another class). As a result, the current language consists
of a large number of predicates; the complete list of predicates is described in
Appendix B. In this chapter, we focus only on those predicates that are relevant
for annotating design information. In section 3.4, we show in more detail how
this predicate language can be used to carry out a matching process on annota-
tions and how to superimpose (introduce) annotations on program units.

Binding Annotations to Program Elements
We distinguish various alternatives to modularize the specification of binding
of annotations to program units. In the following, we have distinguished three
options:

Manual (source-code) binding. The annotations are embedded and attached
one by one to the selected units in the base code. In this way, as we discussed
in the Problem Analysis section, annotations are statically bound; it can be

1) superimposition {
2)   selectors
3)     guiComponents =
4)      { GuiType |
5)        isNamespaceWithName(GuiNS, 'com.myCompany.gui'),
6)        namespaceHasType(GuiNS, GuiType),
7)        isTypeWithAttribute(GuiType,'public').
8)      };
9) }

Listing 3.10 A selector of Compose* designating annotated types
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difficult to reuse the units with annotations if the same annotations are not valid
in each application. On the other hand, it is important to note that in case of
certain domains (e.g. security, synchronization) programmers may intention-
ally want to bind annotations statically to ensure certain constraints in different
applications. In this case, every application that reuses a program unit with
annotations will have the same set of annotations. The manual binding
approach is not suitable for scattered annotations.

Binding via a shadow file. The binding between an annotation and a
programming unit is located in one or more separate, shadow files (e.g. an
XML file). By using this approach, annotations are not bound statically; an
application can have its own set of shadow files that contains the application
specific binding. (This approach can also be applied in JBoss.) To realize this,
there must be a framework that can manage the shadow files in each program.
Using this approach, scattered annotations can be handled, too. However, this
framework must be able to deal with the superimposition specification of anno-
tations.

Binding via an aspect. The binding is formulated in a superimposition speci-
fication that is placed in a module representing an aspect. With the help of this
approach, we can avoid annotations that are statically bound. Naturally, the
problem of scattered properties is solved as well. However, every program and
other tools, such as integrated development environments (IDEs) must be able
to interpret the superimposition specification when they need the information
if an annotation is attached to a certain unit. This problem can be solved by an
annotation compiler that resolves the superimposition specification and
attaches the annotations directly to the corresponding units (e.g. manipulates
the bytecode of the unit). Thus, the annotations will be statically bound as in
the first case. Note that this approach can be combined with the second alter-
native: the annotation compiler generates the XML file that represents the
binding of annotations as meta-data. Note that the shadow file (of the second
option) can be regarded a kind of specialized implementation of an aspect.
With the shadow file, the weaver is logically seen as part of the framework.

3.4 Extending Compose* with Annotations
In this section, we outline how design information annotations can be adopted
in Compose* [9, 12], which is our aspect-oriented language implementation
for .NET
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3.4.1 Definition of Annotations
Annotations have to be defined before they can be attached to a unit. In .NET
annotations are defined as classes that extend the System.Attribute class. The
following example shows the definition of the annotation Persistent.

The annotation AttributeUsage is a meta-annotation (i.e. an annotation bound to
the definition of an annotation) defined by the .NET framework and it specifies
that the annotation Persistent can be attached to only fields.

3.4.2 Annotation-based selection
To designate join points based on annotations, pointcuts have to be able to refer
to annotations. In Compose*, annotations can be referenced in two ways. List-
ing 3.12 illustrates this by an example. The first alternative is to extend the type
patterns with annotations in the set of input filters, as it is shown at (1):
[@Update *] means that every method with the annotation Update will be
matched by the Meta filter. (Without @Update, all methods would match.) For
the Meta filter, when a method matches, it is reified and passed as a parameter
to the updateAction() method that is executed on a PersistentManager instance.

The second alternative at (2) shows how logic predicates can be used to formu-
late queries based on matching annotations. This selector will designate all
classes that have the annotation PersistentRoot by querying all units in the
system and selecting those that match the applied predicates.

In the filtermodules part of the superimposition, the filtermodule Updating is
superimposed on each class that is designated by the selector (c.f. query)

1) [AttributeUsage(AttributeTargets.Field)]
2) public class Persistent : Attribute{
3) }

Listing 3.11 The definition of the annotation Persistent
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named persistentClasses. Thus, every instance of these classes will have an
instance of the filtermodule Updating superimposed.

In this way, annotations are referenced two times. First, the intercepted meth-
ods are filtered based on the annotations in the filtermodule specification.
Secondly, annotations are also referred to by predicates to superimpose the
filtermodules.

3.4.3 Superimposition of Annotations
In the previous section we have shown how annotations can be referenced in
selectors and type patterns within filters (i.e. they are the "pointcuts" of

1) concern Persistence{
2)    filtermodule Updating{
3)       externals
4)          pm : PersistenceManager =
5)                 PersistenceManager.instance();
6)       inputfilters{
7)         redirect : Meta = 
8)            {[@Update *] pm.updateAction};          (1)
9)         dispatch : Dispatch = 
10)            {inner.*}
11)       }
12)    }
13)    superimposition{
14)       selectors
15)        persistentClasses = 
16)         {PersClass | isClass(PersClass),           (2)
17)            classHasAnnotationWithName(PersClass,
18)            'PersistentRoot')
19)         };
20)       filtermodules
21)        persistentClasses <- Updating;
22)    }
23)    implementation in Java; …
24) }

Listing 3.12 Definition of the concern Persistence (cf. aspect) 
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Compose*). In this section we illustrate how annotations can be superimposed
through selectors. A simple example is shown in Listing 3.13.

The superimposition specification of Compose* has been extended with a new
part called annotations. This part gives place to the specification of binding
design information to selectors. In our example, we superimpose the annota-
tion Author("John Smith") on allGUITypes at (4). As a result of this, the annotation
Author("John Smith") will be attached to every type (classes, interfaces, enumer-
ations, etc.) within the namespace com.myCompany.gui.

3.4.4 Annotations in matching Expression - Defining Adaptable Aspects

Problem Description and Example
We will now introduce an example to illustrate how design information can be
utilized in the matching expressions of filters. The source code in Listing 3.14
shows the example concern Caching.For the sake of efficiency, the computation
of certain values is cached. CachingModule intercepts calls on a method which
does the computation (here, getPerimeter() and getArea()), and instead of
performing the method, it returns the previously computed value that is cached
(see the Dispatch filter of CachingModule). Also, each call that can change the
values used in the computation (i.e. setRadius) is intercepted and the state of the

1) concern AssignAuthor{
2)    superimposition{
3)      selectors 
4)        allGUITypes =
5)         { GuiType | isNamespaceWithName(GuiNS,        
6)                     'com.myCompany.gui'), 
7)                     namespaceHasType(GuiNS, GuiType)};
8)      annotations
9)        allGUITypes <- Author("John Smith");         
10)   }
11) }

Listing 3.13 Superimposition of the annotation Author
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cache is set to invalid (see the filtermodule MaintainCache in Listing 3.14).

When the state of the cache is invalid, the new value is computed and stored in
the cache again, and the state of the cache becomes valid (see the Meta filter of
CachingModule)

In the example code of Listing 3.14, the concern Caching is superimposed on
class Circle which has the following interface:

• methods that perform computation: getPerimeter, getArea

• the method that changes the values used in the computation: setRadius
(only the radius is used in the computation methods)

1) concern Caching{
2)   filtermodule CachingModule{
3)     internals
4)        c : CacheACT;
5)     conditions
6)        isInvalidCache : c.isInvalidCache() 
7)     methods
8)        getStoredValue : c.getStoredValue();
9)        updateStoredValue : c.updateStoredValue();
10)     inputfilters
11)        /*only for Circle*/
12)        Update : Meta = 
13)          { isInvalidCache() => 
14)              [getPerimeter, getArea] updateStoredValue } 
15)        /*only for Circle*/         
16)        disp : Dispatch = 
17)          {!isInvalidCache() => 
18)               [getPerimeter, getArea] getStoredValue } 
19)   }
20)    
21)   filtermodule MaintainCache{
22)     ...
23)     inputfilters
24)        /* only for Circle! */
25)        change : Meta = 
26)          { [setRadius] setInvalidCache } 
27)      } …
28)    }

Listing 3.14 Caching with application specific signatures
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For each method that performs a computation (e.g. getPerimeter, getArea), the
return value and a Boolean variable that indicates the state of the cache are
stored. This functionality is implemented in the method updateStoredValue (of
CacheACT).

Problem: In this example, the signatures of Circle (in bold) are explicitly
referred to in the filters; thus, CachingModule cannot be adopted by a new
concern with new computation methods (e.g. the method getVolume() of class
Sphere). In general, the adaptability of filtermodules is limited because the
signatures always have to be explicitly specified in the type patterns of the
specification of the filters. 

Solution & Example Revisited
By referring to design information, the concern Caching can be defined in a
reusable manner so that programmers can customize it to different applica-
tions. The following figure presents an adaptable version of the concern
Caching. 

The original source of Caching has been changed in two places. At (1) the actual
signatures of the methods that perform the computation are replaced by the
annotation Computation. Thus, these methods are not directly referred through
their names but they are referred through the annotation Computation. Similarly,
at (2) the actual signatures of the methods that can change the input values of
a computation are replaced by the annotation ChangeInput. Hence, these meth-
ods are also indirectly referred through the annotation ChangeInput.It is also
necessary to attach the above-mentioned annotations to the right methods in the
base code. A possible solution is to "manually" embed the annotations in the
source of the base classes. Thus, in our example (lines 30-35 in Listing 3.15),
the methods getPerimeter and getArea have to be tagged by the annotation
Computation, since they perform the computation to be cached.Similarly, the
method setRadius has to be labelled by the annotation ChangeInput, since it
changes the input values of the computation. Note that embedding annotations
in the base code can lead to several problems; instead of this technique, the
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superimposition of these annotations might provide a better solution. We
discussed this issue in detail in the previous section. 
1) concern Caching{
2)   filtermodule CachingModule{
3)     internals
4)        c : CacheACT;
5)     conditions
6)        isInvalidCache : c.isInvalidCache() 
7)     methods
8)        getStoredValue : c.getStoredValue();
9)     inputfilters
10)        /*for every computation method*/
11)        Update : Meta = 
12)           {isInvalidCache() =>  
13)   (1)         [@Computation] updateStoredValue } 
14)
15)        /*for every computation method*/
16)        disp : Dispatch = 
17)   (1)      {!isInvalidCache() =>  
18)               [@Computation] getStoredValue } 
19)   }
20)
21)   filtermodule MaintainCache{
22)     inputfilters
23)        /* for every method that changes the 
24)         * input of the computations */
25)   (2)  change : Meta = { [@ChangeInput] setInvalidCache } 
26)    }
27)    …
28) }
29)
30) /* === */
31)
32) class Circle{
33)    [Computation] public double getPerimeter(){ return …; }
34)    [Computation] public double getArea(){ return …; }
35)    [ChangeInput] public void setRadius(double r){  …  }
36)    …
37) }

Listing 3.15 Reusable Caching with Annotations
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IMPLEMENTATION
Discussion: Using annotations in the filters instead of using explicit signatures
allows for defining reusable (adaptable) filtermodules. Thus, if a filtermodule
contains only annotations, it will be free of signatures that are specific to an
application. To customize the filtermodules to different applications, the anno-
tations referred in the filtermodules need to be attached to the necessary units
in the base code. By the combination of mechanisms (using annotations in
filtermodules plus superimposing annotations on the base code), methods are
indirectly intercepted based on their semantic properties. As result of this,
concerns can be adapted in a generic way. 

In AspectJ, this technique is equivalent to referring to annotations in pointcuts.
Note that the same problem could be handled by abstract pointcuts as well.
However, by using design information and generic aspects, the customization
of aspects is "automatically" managed, as long as design information is used in
a disciplined manner.

3.5 Implementation
Figure C.1 in Appendix C presents the architecture of Compose*, the realiza-
tion of Composition Filters on .NET platform. Both the annotation matching
and introduction mechanisms that we proposed in this section were imple-
mented within the LOgical Language (LOLA) and Superimposition ANalysis
Engine (SANE) modules. For further implementation details, we refer to [16].

Appendix B describes the predicates that can be used in the selector construct
of Compose* presented in this and the following chapter.

3.5.1 Limitations
The matching of annotations in filterelements is currently implemented by a
workaround: this is an extra if statement in an ACT to determine if the inter-
cepted method has the proper annotation attached.

In the current implementation, selectors can match only by the type of an anno-
tation; the arguments of an annotation (or the member values of annotation
instances) cannot be referred to. This issue is going to be resolved in the subse-
quent releases of our tool by providing additional predicates to formulate selec-
tors based on that information as well. 
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3.6 Related Work

3.6.1 On Annotating Design Information
Attaching annotations to certain units of programs and models is not a new idea
in software engineering. One of the first appearance of annotations can be
found in POOL-I [4]. The specification of a type in POOL-I is augmented with
a collection of properties which are merely identifiers. These properties are
used by the compiler to determine if one type is a subtype of another one. As
the authors say, "Ideally, such a property identifier serves as an abbreviation
for a formal specification of some aspect of an object's behavior".

In UML [7], stereotypes can be attached to the elements of a model to express
certain design intentions and properties. Tagged values are another means to
attach design information in UML.

Before the appearance of semantic annotations in .NET or Java 1.5, program-
mers could attach semantic information in the form of attributes within Javadoc
tags. The Attrib4j [2] and Apache Common Attributes [1] projects realized this
technique. However, attributes were still not treated as first class entities,
unlike annotations in .NET or Java, in these projects.

3.6.2 On Aspect-Oriented Programming
AspectWerkz [8] is a dynamic aspect-oriented framework for Java that is capa-
ble of embedding aspects into the base code through annotations. In other
words, there is a set of custom annotations that expresses an AOP language,
and one can write his or her aspects by using these custom annotations in the
base code. AspectWerkz allows for matching on annotations in pointcuts;
however, it does not support introducing annotations (this functionality is
mentioned as a future work). Hence, the problem of scattered annotations and
late binding is also not addressed.

JBoss AOP [13] is a Java based aspect-oriented framework usable in any
programming environment and integrated with the application server of JBoss.
Late binding is possible in this framework; besides inserting the annotations
into the bytecode of classes (static binding), the annotation compiler can gener-
ate a separate XML file that contains the metadata (i.e., the binding of custom
attributes). However, the framework allows for matching on annotations in
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pointcuts, and introducing annotations only to a limited set of units (classes,
methods, constructors and fields) through a more limited pointcut language
than ours. (Java 1.5 allows for more types than only these four; e.g., annota-
tions can be attached to packages, annotations, etc. according to the JSR-175
[5] specification.) 

JQuery [17] is a flexible, query-based source code browser, developed as an
Eclipse plug-in. In JQuery, users can define their own queries to select certain
elements of a program. The JQuery query language is defined as a set of
TyRuBa [14] predicates which operate on facts generated from Eclipse JDT's
abstract syntax tree. The predicates of JQuery are dedicated for Java and the
factbase of JQuery is based on Java sources and bytecode files. In Compose*
we also use a predicate language to specify selectors as queries. Our predicates
are dedicated for Compose* and the factbase is based on the repository model
of a Compose* project.

In [8], A. Colyer's  proposes to extend the pointcut language of AspectJ to do
matching based on annotations. Note that the syntax given in [8] was for illus-
trative purposes only. Recently, in the latest version of AspectJ, the above
mentioned proposal had been implemented as well. In AspectJ, annotations can
be introduced through a new language construct, called declare annotation.
Using type patterns in this construct allows for introducing annotations over
multiple units, i.e. it addresses the problem of scattered properties. However,
type patterns have a limited expressiveness to designate units that annotations
are attached to, as compared to the predicate language we propose. The differ-
ence is that type patterns can only designate units based on the properties of
those units, while our predicate language can designate units based on the
context of units, as well. Typically, relationships with other units (e.g. inherit-
ance, aggregation) and properties of related units make up the context of a unit. 

In [20], R. Laddad  investigates the application of metadata in AOP. In this
work, he gives practical hints and guidelines how to use and how not to use
annotations in combination with AOP, particularly, with AspectJ. In our paper,
we also investigated various novel application possibilities of using annota-
tions in AOP, such as providing reusable aspects and evolvable weaving spec-
ifications (for instance, by designating advices based on annotations.)
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3.7 Discussion
In this section, we discuss the consequences of the techniques we proposed in
this chapter, how they can be realized, and finally we summarize the chapter
and outline some future work.

3.7.1 Benefits and contribution
The primary contribution of this chapter is that it presents an in-depth analysis
of the role of design information in the context of aspect-oriented program-
ming. We  showed that there is a need for annotating programs with design
information. We also demonstrated that the integration of design information
with aspect-oriented composition mechanisms offers a means of coupling that
is both manageable and powerful. The main benefits of design information
annotations that we introduced in this chapter are: 

• The ability to select join points based on design information (which
can never be derived from the program itself).

• The programmer can freely choose what the appropriate locations are
to define annotations: within the code, co-located with the code or sep-
arated in an aspect.

• The usage of design information makes aspects, especially pointcut
expressions, less vulnerable to changes of the program. The reason is
that they avoid dependencies of the pointcut expression upon the struc-
ture or the naming conventions of the program. 

• The dependencies between program elements can be more precise and
easier to understand by referring to the design intentions instead of
syntactic structure or naming.

• Finally, our proposal supports the definition and customization of
reusable aspects.

The related work section discussed several recent programming language
implementations that offer -to varying degrees- implementation techniques
that are necessary to deal with design information. However, almost none of
that related work has pointed out the problems of current ways to deal with
semantic properties, or explicitly motivated the need for applying these tech-
niques7. Only the work of Gybels et. al. [15] explicitly discusses these prob-
lems. However, the solution they propose is based on automatic derivation of
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properties, which cannot always be realized, as we pointed out in section 3.2.4.
A preliminary version of the analysis and the solution presented in this chapter
was given in [22]. In the next chapter, we propose several ways to apply anno-
tations in the context of aspect-oriented programming.

3.7.2 Limitations and suggestions
This section lists a number of issues that result from our proposal, along with
some suggestions how these can be tackled:

• It is important that software engineers use a consistent and coherent set
of design information for each sub domain of an application (whether
from a technical/solution domain, or from the application/problem
domain). For example, programmers cannot make use of our approach
if they use terms such as 'setter', 'writer', or 'updater' in an inconsistent
manner. 

In other words, disciplined programming is still required to keep the
correct design information associated with the appropriate program
elements. However, we believe that through the language abstractions
proposed by this chapter, the situation can be improved: we have illus-
trated how superimposition and derivation can be used to attach
semantic properties. In addition, we plan two ways to address this
issue: (1) by investigating design-level support and the automatic deri-
vation of annotation specifications from stereotypes in UML dia-
grams. (2) By searching for techniques that can automatically derive
certain common annotations. We believe that the development and use
of ontologies for identifying a consistent set of semantic properties in a
particular domain can be a useful approach.  

• The annotated design information may require parameters for passing
context information; if the property is superimposed, it is typically
hard to include such context information. One alternative to deal with
this is by accessing the context through a generic reflective interface.

7.  In fact these appear to be rather technology-driven by the introduction of annotations in
Java 5. However the motivation of introducing annotations in java is formulated as: "One of
the primary reasons for adding metadata to the Java platform is to enable development and
runtime tools to have a common infrastructure and so reduce the effort required for pro-
gramming and deployment." [6]
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3.8 Trade-off Analysis of Software Quality Factors

3.8.1 Comprehensibility
Explicitely adding design information to program elements increases the
comprehensibility of the code; programmers can read the intended functional-
ity of a program element. By selecting join points based on annotations also
increases the comprehenesibility of pointcuts and aspects: the dependencies
between program elements can be easier to understand by referring to the
design intentions, instead of syntactic structure or naming patterns. (If the latter
would exactly express the intention, it would be preferred, though). Note that
by using design information the intention of the composition becomes clearer
for the reader of the source code; however, the concrete dependencies are less
visible, as the pointcuts may now refer to (generic) annotations instead of
concrete program elements.

Superimposing (introducing) design information to program elements may
decrease the comprehensibility of the code. The main problem is that an anno-
tation might be attached to a program element - in the byte-code of application
through a superimposition - but this is not visible in the original source code.
One possible solution to this problem is to indicate the presence of an annota-
tion in a comment, or through IDE tool support, for example.

3.8.2 Evolvability
The usage of design information makes aspects, especially pointcut expres-
sions, less vulnerable to changes in the source of a program. The reason is that
they avoid dependencies of the pointcut expression upon the structure or the
naming conventions of the program. Consequently, this has a positive impact
on the evolvability of the code as long as the use of annotations is kept consist-
ent.

3.8.3 Predictability
Using explicit design information, in the form of annotations, does not improve
the predictability of the source, as compared to naming or structural patterns.
To use the design information in a correct manner, programmer should not
forget to attach it where they need to do. 
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On the other hand, this issue can be addressed by, for example, deriving the
design information from design documentation, such as UML diagrams. Also,
other analysis techniques, such as control-flow and data-flow analysis, can
help in determining, and associating certain semantic properties with program
elements.  

3.8.4 Adaptability
In general, the use of annotations increases the adaptabilty of the components
of a system: by providing a technique that allows for the superimposition of
annotations, annotations do not need to be statically bound to program
elements (i.e. components) anymore. This means that a given component can
be reused and adapted to different application contexts by superimposing
different annotations on it. This is an important feature in large-scale software
development where the reuse of existing components is always a central issue.

3.8.5 Modularity
The use of design information in the form of annotations has a positive impact
on the modularity of the system: using annotations in pointcuts introduces a
level of indirection in pointcut matching. In other words, a pointcut that refers
to lexical or structural elements can be now substituted with a pointcut that
refers to design information, in the form of an annotation. In this way, the
pointcut is not directly coupled with  the base code and the aspects will not have
explicit dependencies to concrete program structures.

By superimposing (introducing) annotations, scattered annotations can be
expressed within a single statement. This means that an annotation that would
otherwise be present in the source of several modules can be localized only in
one module.

3.9 Conclusion
Software that is developed today is making frequent use of design information
that is encoded in some way into the source code. In this chapter, we argue that
it is unavoidable to add such design information (a) since not all relevant
design information can be derived from the executable source code, and (b)
when one wants to refer to program elements based on design intentions, rather
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than trying to capture the right set of elements by referring to their 'accidental'
lexical and structural properties.

In section 3.2 we have analyzed four techniques currently used for binding and
deriving design information in traditional object-oriented languages, such as
Java or C#. We have illustrated how aspect-oriented software often utilizes
design information in its pointcut expressions, and we have presented deficien-
cies when using any of these four techniques. 

To conclude the problem analysis, we have formulated three requirements for
adopting design information in aspect-oriented programming:

1. Pointcut expressions may need to be able to refer to design informa-
tion.

2. There is a need to support the superimposition of design information.
3. It must be possible to do late binding of design information to program

units and elements.

In section 3.3 we have analyzed how design information can be used in the
superimposition of aspects and how superimposition can be applied to bind
design information to the base code. Based on this analysis, in section 3.4 we
have shown how a concrete aspect-oriented language (Compose*) can be
extended to support modeling design information in such a way that the above
mentioned requirements are fulfilled:

1. Section 3.4.2 has presented how design information can be used in
pointcut expressions to designate join points.

2. Section 3.4.3 has illustrated how design information can be superim-
posed or derived.

3. The bindings between the design information and units can be
expressed by superimposition specifications and localized in a con-
cern, which is the aspectual module of our language (see section 3.4).

A number of research topics for future research have appeared as the result of
this work; some of those address the limitations as explained in section 3.7.2.
Other potential future work is about (a) the ability to apply the notion of seman-
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tic composition to other composition techniques than the superimposition
mechanism, or (b) the exploitation of semantic composition for the purpose of
modeling product lines and variability management

Finally, we observe that the technology for using design information together
with AOP is becoming available in several languages and environments, and
we believe that this chapter can contribute to a better understanding of the
importance of using design information and the possible applications.
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Chapter 4

Evolvable Weaving

Specifications

In the current aspect-oriented languages, advices and pointcuts are, in general,
explicitly associated. This results in weaving specifications that are less evolvable
and need more maintenance during the development of a system. To address this
issue, we propose associative access to advices and aspects: a designating mecha-
nism that allows for referring to aspect/advices through their (syntactic and seman-
tic) properties in advice-pointcut bindings. First, this chapter presents an extensive
analysis of the advice-pointcut binding mechanisms of the state-of-the-art AOP
approaches. Based on this analysis, we extend the current weaving (superimposi-
tion) specification of our aspect-oriented approach, Compose*. In the new specifi-
cation, we apply queries that can designate filtermodules and other types of units
(e.g. annotations) based on their properties. As an evaluation of our work, we
present a tradeoff analysis about the new weaving specification with respect to
several software quality factors, in particular expressiveness, evolvability and
comprehensibility. The chapter ends with a discussion of related work and conclu-
sions.1

4.1 Introduction
Advices and pointcuts are among the most important language concepts of
aspect-oriented languages [11]. Advices associated with pointcuts form a large
part of the weaving (superimposition2) specification by describing, respec-
tively, the subjects and places of weaving. We argue in this chapter that the way

1. This chapter is based on work published in [20], [21] and [15].
2. The composition of aspects with the base classes is called superimposition. 
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these elements are associated has a significant influence on the weaving spec-
ification with respect to software quality factors, such as expressiveness,
evolvability and comprehensibility [19].

The current advice-pointcut binding mechanisms of AOP languages maintain
explicit dependencies to advices and aspects. This results in weaving specifi-
cations that are less evolvable and need more maintenance during the develop-
ment of a system. We believe that this issue can be addressed by providing
associative access to advices and aspects instead of using explicit dependen-
cies in the weaving specification. To this aim, we propose to use a designating
(query) language in advice-pointcut bindings that allows for referring to
aspect/advices through their (syntactic and semantic) properties.

This chapter is structured as follows: section 4.2 presents an extensive analysis
of the advice-pointcut binding mechanism of various AOP approaches. Section
4.3 outlines our approach. Section 4.4 discusses the extension of Compose* [4,
7] for supporting evolvable weaving specifications. First, we provide a back-
ground on the current binding mechanism of Compose*. In the subsequent
sections, we show our proposal to extend the superimposition specification of
Compose* based on the analysis we performed before. These subsections also
present a tradeoff analysis in which we evaluate the proposed mechanisms in
the view of the above mentioned software quality factors. Section 4.5 provides
details about the implementation. Finally, we close the chapter with related
work and contribution in section 4.6.

4.2 An Analysis of Weaving Specifications
In the following sections, we look at the weaving specifications of the state-of-
the-art AOP approaches, such as AspectJ [17, 10], AspectWerkz [3, 5] and
JBoss [8]. In particular, we examine how certain elements (e.g. pointcuts,
advices, etc.) of the weaving specification are associated with each other, how
these elements can be reused in another weaving specification, what can be
subjects of a weaving specification and to what degree the weaving specifica-
tion can capture the evolution of concerns. By reflecting on these issues, our
goal is to identify those language features that may have significant impact on
a weaving specification.
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4.2.1 Associating Advices with Pointcuts
Regarding the coupling between the advices and pointcuts, we identified two
main categories of advice-pointcut bindings: strong and loose coupling.

Strong Coupling
In case of strong coupling, the definition of an advice includes the pointcut to
which the advice is permanently bound. 

The advice construct of AspectJ is a typical example for this type of associa-
tion. Listing 4.1 shows a simple example of binding a before advice to a point-
cut called tracedMethods.

Strong association has a negative impact on the reusability of advices and
aspects: the problem is that an advice is permanently bound to a pointcut. This
has two consequences: (1) the advice cannot be associated with a new pointcut
(i.e. with new join points); (2) the code of an advice cannot be reused from
other advices, since an advice is not called like an ordinary method; it is only
executed when the join point is reached by the control flow.

To circumvent the first problem, AspectJ has the concept of abstract pointcut
which allows for deferring the specification of a pointcut that is already asso-
ciated with an advice. In the example of Listing 4.2, the before advice is asso-
ciated with the abstract pointcut tracedMethods in the abstract aspect Tracing.
This abstract pointcut is concretized in the GUITracing aspect that inherits from
Tracing. By applying this technique, the before advice can be associated with
various pointcuts. The only disadvantage of this approach is that the compre-
hensibility of the code decreases, especially when the size of the project scales

1) pointcut tracedMethods(): execution…;
2) before(): tracedMethods(){
3)   if (TRACELEVEL == 0) return;
4)   if (TRACELEVEL == 2) callDepth++;
5)   printEntering(thisJoinPoint.getSignature());
6)   …
7) }

Listing 4.1 Advice-Pointcut binding in AspectJ
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up. The reason is that every subaspect should be read to determine the complete
set of pointcuts (and join points) that the advice is associated to.

To avoid the second problem and provide code that can be reused by several
advices, we need to refactor the code of an advice into ordinary methods that
can be called from any advice. We illustrate this in Listing 4.3 that shows the
previous example after the corresponding refactoring.

1) abstract aspect Tracing{
2)    abstract pointcut tracedMethods();
3)
4)    before(): tracedMethods(){
5)       if (TRACELEVEL == 0) return;
6)       if (TRACELEVEL == 2) callDepth++;
7)       printEntering(thisJoinPoint.getSignature());
8)       …
9)    }
10)    …
11) }
12) aspect GUITracing extends Tracing{
13)    pointcut tracedMethods(): 
14)       within (com.app.gui.*) && …;
15) }

Listing 4.2 An example for an abstract pointcut in AspectJ

1) abstract aspect Tracing{
2)    abstract pointcut tracedMethods();
3)    before(): tracedMethods(){
4)       Tracer.traceEntry(
5)            thisJoinPoint.getSignature());
6)    }
7)    …
8) }
9) public class Tracer{
10)   public static void traceEntry(String sign){
11)       if (TRACELEVEL == 0) return;
12)       if (TRACELEVEL == 2) callDepth++;
13)       printEntering(sign);
14)       …
15)    }
16) }

Listing 4.3 Using helper methods in AspectJ
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In this example, the code of the before advice is replaced by a call to the
traceEntry method of Tracer that contains the original code of the advice. As a
result, the method can be called (i.e. reused) from different advices. Note that
the information from the thisJoinPoint variable had to be extracted in the advice
and passed as a parameter to the method, since this variable is available only in
the context of an advice. Another important issue is that an around advice
cannot be refactored in this way; the reason is similar: the proceed keyword is
applicable only within the context of around advices in AspectJ.

Practically, abstract pointcuts and helper methods can be considered as useful
techniques when one wants to create adaptable advices; however, they also
have  disadvantages, as we have presented them in the examples.

Loose Coupling
Advices and pointcuts are weakly associated if they are specified independ-
ently from each other and coupled in an independently defined binding speci-
fication. 

The advice binding construct of AspectWerkz is a typical example of weak
association. Listing 4.4 shows the implementation of the example of tracing in
AspectWerkz. In AspectWerkz, aspects are represented by classes and the
methods of those classes may act as advices. In the example above, the method
traceEntry of Tracer contains the advice. The XML descriptor (lines 11-19)
contains a pointcut definition called tracedMethods and an aspect specification.
The aspect specification declares that the class Tracer will be treated (e.g.
instantiated) as an aspect in the system, while the advice binding connects the
method traceEntry as a before advice to the previously defined pointcut. Note
that this sort of aspect specification may allow for reusing a class (that acts as
an aspect) in the realization of different aspects (e.g. using different instantia-
tion strategies). Similarly, using this type of advice binding allows for binding
a method to different (types of) advices. As a result, it is possible to reuse not
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only pointcuts but also the crosscutting functionality, represented by the
method, for the implementation of different advices.

4.2.2 Multiplicity in Bindings
In the current AOP languages, the general case is that a pointcut specification
(designating many join points) is associated with an advice in the binding spec-
ification.

The advice construct of AspectJ is a good example of a many-to-one binding.
In AspectJ, advices are always defined with a pointcut reference (or with the
pointcut definition itself). For example, Listing 4.1 shows a definition of a
before advice bound to a pointcut called tracedMethods. Note that a pointcut can
be bound to an arbitrary number of advices; however, a new binding specifica-
tion should be defined for each binding. Listing 4.5 shows an example of this:

1) public class Tracer{
2)   public void traceEntry(JoinPoint thisJP){
3)       if (TRACELEVEL == 0) return;
4)       if (TRACELEVEL == 2) callDepth++;
5)       String signature = 
6)          thisJP.getSignature().getName();
7)       printEntering(signature);
8)       …
9)   }
10) }
11) <aspectwerkz>
12)    …
13)    <pointcut name="tracedMethods" 
14)              expression="…" />
15)    <aspect name="TracerAspect" class="Tracer">
16)       <advice name="traceEntry" type="before" 
17)               bind-to="tracedMethods"/>
18)    </aspect>
19) </aspectwerkz>

Listing 4.4 Advice-pointcut binding in AspectWerkz
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two before advices, located in different aspects, are bound to the same pointcut
in two advice definitions.

The same problem appears in AspectWerkz, as well: a pointcut can be bound
to several advices but we need to create a new binding specification for each
case. Listing 4.6 shows an example for this. First, a pointcut called
tracedMethods is declared; this is followed by two aspect mappings that contain
two advice bindings. Note that in the fully qualified advice reference we refer
not only to advices but also to the aspects that contain the advices. 

1) aspect TracerAspect{
2)    pointcut tracedMethods(): execution…;
3)
4)    before(): tracedMethods(){
5)       if (TRACELEVEL == 0) return;
6)       if (TRACELEVEL == 2) callDepth++;
7)       printEntering(thisJoinPoint.getSignature());
8)       …
9)    }
10) }
11) aspect AnotherTracerAspect{
12)    before(): TracerAspect.tracedMethods(){
13)       /* another advice bound to the same pc */
14)       …
15)    }
16) }

Listing 4.5 Two advices bound to the same pointcut in AspectJ

1) <pointcut name="tracedMethods" 
2)           expression="…"/>
3)    
4) <aspect class="TracerAspect">
5)    <advice name="traceEntry" type="before" 
6)            bind-to="tracedMethods"/>
7) </aspect>
8)
9) <aspect class="AnotherTracerAspect">
10)    <advice name="traceEntry" type="before" 
11)            bind-to="tracedMethods"/>
12) </aspect>

Listing 4.6 Two aspects bound to the same pointcut in AspectWerkz
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There are certain cases when it is necessary to weave not only one aspect or
advice but a set of aspects or advices at a given join point. Clearly, the many-
to- one type of binding specification is not sufficient in these cases. Whenever
a new advice has to be bound to a given pointcut, a new complete binding spec-
ification has be created for it as well. As a result of this, as Listing 4.6 shows,
we will get a set of binding specifications that contains (partially) duplicated
information, which makes the code difficult to maintain. 

Note that shared join points may appear when we bind a set of advices to the
same pointcut, since advices will be woven at the same join point. We may
need to provide control over the execution order of advices to avoid possible
conflicts.

Many-to-Many Binding 
In the advice-pointcut binding specification, a pointcut can be bound to a set of
advices. Although this sounds as an obvious alternative, not too many aspect-
oriented languages support this alternative.

JBoss provides a mechanism by which many-to-many bindings can be created
between a pointcut and several advices. At the same time, this mechanism
controls the execution order of advices. Using the previously introduced exam-
ple, we illustrate this mechanism in Listing 4.7. TracerAspect and
AnotherTracerAspect are implemented by classes, as previously. Both classes
have the methods (traceEntry) that will behave as advices when these classes are
mapped to aspects. Subsequently, the aspects are listed with the corresponding
advices between the stack tags. The order of the listed aspects and advices does
matter, since they are executed in the order of listing when the join point they
are attached to is reached. This whole stack (called Tracing) is bound to the
tracedMethods pointcut in the binding specification, defined within the bind
XML tags.

Note that this technique is an enumeration that is similar to the binding of
AspectWerkz, since the aspects are listed within the stack tags. On the other
hand, using the stack structure for enumerating the aspects has some benefits
as well. First, the stack acts a 'virtual' module for a set of aspects that are
wrapped into it. Thus, a set of aspects can only be referred to by one reference
in the binding specification. (In other words, a set of aspects can be bound to
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several pointcuts through only one reference.) Secondly, as aspects are organ-
ized into a stack structure, the execution order of their advices at shared join
points is also provided.

However, there is a problem with using enumeration (or similar techniques,
like the stack) in many-to-many bindings: the binding specification has to be
modified whenever a new aspect is involved in the binding specification (or an
existing one is removed). In other words, the enumeration based techniques do
not provide evolvable binding specifications.

4.2.3 Associative Access
If we take a closer look at the binding specifications we can see an important
difference between the bindings of AspectJ and AspectWerkz (or JBoss). In the
case of the latter languages, we refer to the name - that is, the identity - of an
aspect and advice in the binding. That is, aspects and advices are bound to

1) public class TracerAspect{
2)    Object traceEntry(Invocation object) 
3)                                throws Throwable
4)    {…}
5) }
6)
7) public class AnotherTracerAspect{
8)    Object traceEntry(Invocation object) 
9)                                throws Throwable
10)    {…}
11) }
12)
13) <stack name="Tracing">
14)   <advice name="traceEntry" 
15)           aspect="TracerAspect"/>
16)   <advice name="traceEntry" 
17)           aspect="AnotherTracerAspect"/>
18) </stack>
19)
20) <pointcut name="tracedMethods" expr=… />
21)
22) <bind pointcut="tracedMethods">
23)        <stack-ref name="Tracing"/>
24) </bind>

Listing 4.7 Enumerating advices in the binding specification in JBoss
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pointcuts based on their identity. In general, aspects or advices can share
common properties. For instance, aspects with similar functionality can have a
common (design information) property that denotes their analogous semantics.
Taking the well-known example of aspect-oriented programming, we can clas-
sify aspects with monitoring functionality as monitoring aspects. Similarly,
other design information can be easily associated with aspects or advices,
considering various issues, such as their domain (e.g. security, persistence
aspects), or their implementation characteristics (e.g. singleton aspects). As
another well-know example, we can mention the classification used in the
AspectJ Programming Guide [23]: development, production aspects. 

By involving the design information (semantic properties) in the binding spec-
ification, aspects can be designated for weaving based on their design inten-
tion. For instance, assume a simple example: we would like to bind the advices
of "development" aspects to a given pointcut. That is, we would like to bind
each advice of all "development" aspects to a certain join point. By referring to
aspect and advices through their semantic properties, we can provide associa-
tive access to aspects and advices. The benefit of this approach is that the weav-
ing specification becomes more evolvable and less fragile to changes.
Currently, none of the existing aspect-oriented languages provides designating
mechanisms that can be used to select aspects and advices for weaving. In
section 4.4, we show how Compose* can be extended to select aspects for
superimposition. 

Note that in case of the advice designation that we described above, shared join
points may occur, similar to when we enumerated (or partially duplicated) the
binding specifications. As we wrote before, this issue should be addressed to
avoid possible conflicts.

4.2.4 Subjects of Weaving
In the current AOP approaches, the weaving specification, in general, binds
behavioral advices to pointcuts. However, different types of introductions and
structural constraints (see the reference model in Chapter 2) are typical exam-
ples for structural advices that are bound to pointcuts. Similar to behavioral
advices, these structural advices formulate crosscutting concerns over the
structure of the application. 
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In Figure 4.1, we show an example from AspectJ where the subjects of pointcut
binding are not behavioral advices.

The first example of AspectJ is the statement declare error. This construct lets
the compiler signal an error with the specified message ("Illegal Call") if the
join point specified by the pointcut register() && !canRegister() matches. The
construct declare annotation, in the newest release of AspectJ [22], specifies that
all types defined in a package with the prefix org.xyz.model have the
@BusinessDomain annotation. The common characteristic of these examples is
that we bind pointcuts to structural advices, in this case, an architectural
constraint and an introduction. Note that "org.xyz.model..*" is not an official
pointcut in AspectJ; it is only a regular expression with a limited expressive-
ness, as compared to the fully expressive pointcut language of Compose*.

4.2.5 Summary
In our analysis, we have identified the following key properties that can
improve the weaving specification:

Loose coupling provides reusable crosscutting behavior: advices and aspects
can be reused in (i.e. adapted to) different applications, if they can be specified
independently, and assigned to pointcuts later. For the same reason, loose
coupling is a prerequisite for developing aspect libraries.

Many-to-many bindings yield more expressive binding specifications: as
opposed to many-to-one bindings, a single specification can express the bind-

1) /*--- AspectJ Examples ---*/
2)
3) pointcut register(): 
4)    call(void Registry.register(FigureElement));
5) pointcut canRegister():
6)    withincode(static * FigureElement.make*(..));
7)
8) declare error: 
9)    register() && !canRegister(): "Illegal call";
10)
11) declare annotation:
12)    org.xyz.model..* : @BusinessDomain;

Listing 4.8 Different types of structural advices bound to pointcuts in AspectJ
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ing between a set of advices and a set of pointcuts. This means that we can
avoid creating a new specification for each binding between an advice and the
pointcut.

Associative access allows for designating a set of advices and aspects, based on
their properties (or relationships to other units). Hence, the weaving specifica-
tion is more evolvable and less fragile to changes, since advices and aspects are
implicitly bound to pointcuts, through their properties. 

Weaving subject polymorphism: in section 4.2.4 we observed that various
types of language elements can be bound to pointcuts. This can lead to
increased expressiveness of the language, as well as improved uniformity.

4.3 The Approach
Our goal is to enhance the binding specification to incorporate the features that
we identified in the previous section. To do so, we propose abstractions that
support these features. Figure 4.1 depicts an overview of our approach.

Figure 4.1 Associative access in weaving specifications

Pointcuts describe join points based on the properties of the join point (or
shadow point) to be designated; i.e. pointcuts introduce a level of indirection
in referring to particular join points. Similarly, we introduce a level of indirec-
tion (i.e. associative access) in referring to particular advices in the weaving
specification (indicated by the dashed arrow). In this way, a set of join point

Binding 
specification

+ associative access
+ annotationPointcuts ~ JP designation

(associative access)
+ annotation

JPJPJP
annotation

Advice

Aspect/
Advice
134



EXTENDING COMPOSE*
can be associated with a set of advices in a single binding specification. Tech-
nically, this means that we attach design information (in the form of annota-
tions) to advices and aspects, and propose dedicated pointcuts to designate
these units based on the annotated design information (Note that we proposed
the designation of join points in a similar manner in the previous chapter.) 

To superimpose (i.e. introduce) annotations on different program elements, we
propose a pointcut language for structural join point matching that can also
refer to annotations (attached to various program elements, such as classes,
fields, methods, etc.). In this way, we can provide a technique to introduce
annotations based on annotations and other properties that are already attached
to other program elements. We call this technique derivation of annotations.

In the next section, we present an extension to the current superimposition
specification of Compose* that realizes these features.

4.4 Extending Compose*
The following section gives details about the current superimposition specifi-
cation of our aspect-oriented approach, Compose*. In section 4.4.2 and 4.4.3
we show our proposal to extend the superimposition specification of
Compose*. These sections also contain a tradeoff analysis in which we evalu-
ate the proposed mechanisms.

4.4.1 The Superimposition Specification of Compose*
Listing 4.9 presents a simple example case for the superimposition specifica-
tion of Compose*.

Using the AspectJ terminology, we apply two development concerns in this
example: Tracing and Profiling. Tracing contains a filtermodule (SimpleTracing)
that implements the crosscutting functionality, i.e. tracing the execution of
methods, in this case. Similarly, Profiling also has a filtermodule specification
(SetsCounting) to realize the profiling feature: counting the changes of member
variables through update methods (e.g. methods with ’set’ prefixes). Since we
are focusing on the aspect/advice-pointcut composition, we omitted to show
the implementation of these filtermodules. The third, independent concern
called WeaveDevelopmentAspects contains the superimposition specification.
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The superimposition specification consists of two parts: a selector definition
(lines 14-18) and a filtermodule binding (lines 19-20). In Compose*, every
selector has a name (figureClasses), which is unique within the concern where
it is defined. This selector designates a set that consists of possible values for a
variable (FClasses), where the predicates after the '|' puts constraints on these
values. The first predicate (isClassWithName) binds the class FigureElement to
the Class variable. The second predicate binds every class inherited from
FigureElement to the FClasses variable by using unification. In the filtermodules
part of the superimposition, the SimpleTracing and SetsCounting filtermodules
are superimposed on each class that is designated by the previously defined
selector (i.e. every class inherited from FigureElement). Thus, every instance of
these classes will have an instance of the filtermodules superimposed.

1) concern Tracing{
2)   filtermodule SimpleTracing{ … }
3)
4)   implementation in Java; …
5) }
6)
7) concern Profiling{
8)   filtermodule SetsCounting{ … } 
9)
10)   implementation in Java; …
11) }
12)
13) concern WeaveDevelopmentAspects{
14)   …
15)   superimposition{
16)     selectors
17)       figureClasses = { FClasses | 
18)               isClassWithName(Class,'FigureElement'),                  
19)          inInheritanceTree(Class,FClasses) 
20)       };
21)     filtermodules
22)       figureClasses <- SimpleTracing,SetsCounting;
23)   }
24)   …
25) }

Listing 4.9 Enumerating filtermodules for superimposition in Compose*
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Based on the classifications we presented in section 4.2, the filtermodule bind-
ing specification of Compose* can be described as many-to-many binding with
loose coupling. However, we can also see in the example of Listing 4.9 that
filtermodules are enumerated in the binding specification. As we discussed, the
enumeration technique results in difficult code maintenance and not evolvable
advice-pointcut bindings. For this reason, in the following sections, we show a
proposal to extend Compose* with a new binding mechanism that can provide
evolvable weaving specifications.

4.4.2 Querying Filtermodules
Instead of enumerating filtermodules, we aim at providing associative access
to them. To achieve this, we apply selectors, the existing query mechanism of
Compose*, to designate filtermodules based on their properties. This is illus-
trated in Listing 4.10 by a simple example.

The example starts with a concern specification, Tracing, that has two filter-
modules: SimpleTracing and AdvancedTracing. The second concern,
WeaveTracingModules, contains the superimposition specification. The first
selector (figureClasses, in lines 13-17) was already explained the previous
example; it will query all the classes inherited from the FigureElement class. The
second selector (tracingModules) will query all the filtermodules within the
Tracing concern (lines 18-23). In the filtermodule binding, we bind the selector
tracingModules to the figureClasses selector. This means that every instance of
the selected classes will have an instance of all filtermodules queried by
tracingModules1. In this way, selectors are used with two purposes: (a) designat-
ing the classes on which the filtermodules are being superimposed; (b) desig-
nating the filtermodules that we will superimpose.

Trade-off Analysis

Positive Impacts on Software Quality Factors
Instead of enumerating the filtermodules one by one, we were able to designate
a set of filtermodules based on their properties (or relationships to other units).

1. If we designate and bind a set of filtermodules to a selector, the problem of shared join
points will occur. To avoid this problem we have to handle this issue in parallel by providing
a superimposition order for filtermodules. We address this issue in Chapter 5.
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Hence, the weaving specification becomes expressive with the application of
queries both on the base classes and the superimposed filtermodules.

When a new filtermodule is introduced within the concern Tracing, it is auto-
matically captured by the query; therefore, the weaving specification becomes
more evolvable as compared to the enumeration based technique. 

Negative Impacts on Software Quality Factors
The programmer of filtermodules (or aspects) should be aware of the selectors
that can potentially capture a newly introduced filtermodule. It might be
intended to query the new filtermodule; however, this might not be intended at

1) concern Tracing{
2)   filtermodule SimpleTracing{ … }
3)   filtermodule AdvancedTracing{ … }
4)
5)   implementation in Java;
6)   …
7) }
8)
9) concern WeaveTracingModules{
10)   …
11)   superimposition{
12)     selectors
13)       figureClasses = 
14)         { FClasses | 
15)                    isClassWithName(Class,'FigureElement'),                  
16)           inInheritanceTree(Class,FClasses) 
17)         };
18)       tracingModules =
19)         { FModule |
20)           isFilterModule(FModule),
21)           concernHasFilterModule(Concern,FModule),
22)           isConcernWithName(Concern,'Tracing')
23)         };
24)     filtermodules
25)       figureClasses <- tracingModules;
26)   }
27)   …
28) }

Listing 4.10 Querying filtermodules in Compose*
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all. Note that the enumeration of the filtermodules represents explicit depend-
encies on the filtermodules in the weaving specification. By changing enumer-
ations to queries we turns these explicit dependencies into implicit ones, since
queries refer to filtermodules through their properties. For this reason, the
weaving specification becomes less transparent (comprehensible) for program-
mers but more intentional, as compared to the enumeration technique. Tools
and intelligent IDEs (integrated development environments) can help to
resolve these implicit dependencies and show them explicitly. For instance, the
AJDT project [6] is a typical example of such a tool. 

We have used only syntactical properties (e.g. a name of a concern) and struc-
tural relationships (e.g. a filtermodule contained by a concern) to formulate
queries in the examples. However, if we have to modify (e.g. refactor) the code
for certain reason, the queries that have worked until now may fail to work in
the future. For instance, by renaming the concern Tracing, the tracingModules
selector will not work in the last example. That is, the fragile pointcut problem
[18, 12] may apply not only to the pointcuts that designate join points in the
base code but also to the 'pointcuts' (or queries) that designate the aspect/
advices for weaving. In the following section, we propose to use annotations
on filtermodules to address this problem.

4.4.3 Annotating Filtermodules & Concerns
Annotations (as known as custom attributes in .NET [1], or metadata facility in
Java [2]) can be generally used to associate (semantic) properties with a
language unit. In the previous chapter, we presented how pointcuts can make
use of annotations attached to the base code. In this section, we show how
filtermodules can be selected by using the generic query mechanism of
Compose*. Listing 4.11 gives an example.

In Listing 4.11, we use the same example that we used in Listing 4.9, in section
4.4.1. Tracing and Profiling are both development aspects; hence, we attach the
annotation Development to them. In WeaveDevelopmentAspects, we introduce a
new selector, developmentModules, that queries all filtermodules contained by a
concern with the annotation Development (lines 26-32). In the filtermodule
binding specification, we bind this selector to the previously defined
figureClasses selector. As a result, all filtermodules of each concern with the
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annotation Development will be superimposed on the selected figure element
classes.
1) [Development]
2) concern Tracing{
3)   filtermodule SimpleTracing{ … }
4)   
5)   implementation in Java;
6)   …
7) }
8)
9) [Development]
10) concern Profiling{
11)   filtermodule SetsCounting{ … }  
12)
13)   implementation in Java;
14)   …
15) }
16)
17) concern WeaveDevelopmentAspects{
18)   …
19)   superimposition{
20)     selectors
21)        figureClasses = 
22)          { FClasses | 
23)                        isClassWithName(Class,'FigureElement'),                  
24)            inInheritanceTree(Class,FClasses) 
25)          };
26)       developmentModules =
27)          { FModule |
28)            isFilterModule(FModule),
29)            concernHasFilterModule(Concern,FModule),
30)            concernHasAnnotationWithName(Concern,
31)            'Development') };
32)
33)      filtermodules
34)        figureClasses <- developmentModules;
35)   }
36)   …
37) }

Listing 4.11 Querying filtermodules for superimposition based on their 
annotations
140



EXTENDING COMPOSE*
Trade-off Analysis

Positive Impacts on Software Quality Factors
Whenever a new concern is introduced with the annotation Development, its
filtermodules are automatically involved in the weaving specification. In addi-
tion, the concerns can have now arbitrary names, since the query does not refer
to their names but to their design information, expressed by an annotation
(Development) in this case. In general, the use of design information makes
aspects, especially pointcut expressions and queries, less vulnerable to changes
to the program. They provide evolvability, since they allow for avoiding
dependencies of pointcut expressions upon the structure or naming conven-
tions of a program. 

The dependencies between program elements can now be made more precise
and easier to understand by referring to semantic information (design inten-
tions). Hence, there is a positive impact on comprehensibility as well.

Negative Impacts on Software Quality Factors
Disciplined programming is required to keep the correct semantic properties
associated with the appropriate program elements. 

Similarly, it is important that software engineers use a consistent and coherent
set of semantic properties for each sub domain of an application (whether from
a technical/solution domain, or from the application/problem domain). For
instance, if programmers use annotations such as 'setter', 'writer', or 'updater'
inconsistently, our approach has a limited value. For this reason, there is nega-
tive impact on the predictability of the superimposition specification.

4.4.4  Derivation of Annotations
In the previous chapter, we introduced a simple extension to the existing mech-
anism used to superimpose filtermodules in Compose*: a new language
construct that specifies the superimposition of annotations on a set of selected
program elements. The selector mechanism itself is exactly the same as the one
used for superimposing filtermodules, and has Turing-complete expressive-
ness. Program elements can be selected based on their name, properties and
relations to other program elements (i.e. based on the static structure of the
141



CHAPTER 4 EVOLVABLE WEAVING SPECIFICATIONS
application), including annotations. A simple example is presented in Listing
4.12.

In Listing 4.12, the class SessionID and its subclasses are selected by the selec-
tor transientClasses (lines 4-6). The annotation TransientClass will be superim-
posed (introduced) to this set of selected classes (line 8).

Previously, we extended the selector language of Compose* to use annotations
as a selection criterion and introduced a language construct to superimpose
annotations on a set of selected program elements. These two features can be
combined to achieve the derivation of annotations.

To illustrate this, we extend the previous example by defining the following
rule: If a field within a class that is marked by the annotation PersistentRoot is
of a type that has the annotation TransientClass attached, it should be marked
by the annotation TransientField. This way, we can specify an exception to the
general rule that all fields within a class marked by the annotation
PersistentRoot will be kept in a persistent data store. We express this example
in Compose* in Listing 4.13. Here, the selector transientField selects all fields
F, as long as they are of a type that has the annotation named TransientClass
attached (line 3-5).

1) concern AppSpecificPersistence {
2)   superimposition{
3)     selectors
4)       transientClasses =
5)         { AnySess | isClassWithName(S, ’SessionID’),
6)                     classInheritsOrSelf(S, AnySess) };
7)     annotations
8)       transientClasses <- TransientClass;
9)   }
10) }

Listing 4.12 An example of the introduction of annotations.
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The annotation TransientField is superimposed on these fields (line 7).

Trade-off Analysis

Positive Impacts on Software Quality Factors
By extending Compose* to enable the superimposition and derivation of anno-
tations, it is possible to separate the annotations from implementation classes,
thus preventing the scattering of annotations. Also, this enables better separa-
tion between concerns, as they can select program elements based on the exist-
ence of annotations that may or may not have been attached by other concerns.
Hence, the introduction of annotations has a positive impact on modularity and
adaptability. 

By supporting the derivation of annotations, dependent annotations (and
complete annotation hierarchies) can be automatically superimposed. In this
way, the inconsistencies caused by the manual attachment of such annotations
can be avoided as well. Hence, the derivation of annotations has a positive
impact on predictability.

Negative Impacts on Software Quality Factors
The use of derivation of annotations in several concerns could make it hard for
a programmer to keep track of what will match a certain selector expression. In
other words, the derivation technique may provide less comprehensible code
as compared to the regular annotation introductions. However, by ensuring the
declarativeness of selector expressions and superimposition of annotations, we
believe that we could keep the use of this mechanism as straightforward as
possible for the programmers.

1) superimposition {
2)   selectors
3)     transientFields = { F |
4)        typeHasAnnotationWithName(T, ’TransientClass’),
5)        fieldType(F,T) };
6)   annotations
7)     transientFields <- TransientField;
8) }

Listing 4.13 Deriving an annotation
143



CHAPTER 4 EVOLVABLE WEAVING SPECIFICATIONS
4.5 Implementation
The superimposition and derivation of annotations as described in this chapter
has been implemented the LOgical Language (LOLA) [14] and Superimposi-
tion ANalysis Engine (SANE) modules of the Compose* project (see Figure
C.1 in Appendix C). A limitation in the current version is that parameters of
annotations cannot be queried yet. Also, we intend to add support for writing
superimposed annotations back to the IL code (to support non-aspect oriented
frameworks). This functionality has not been implemented yet (i.e. superim-
posed annotations can only be used within Compose*).

4.6 Conclusion

4.6.1 Related Work
In section 4.2, we discussed the binding specification of AspectJ[17, 10],
AspectWerkz [3, 5] and JBoss [8] in detail. Both AspectJ and JBoss provide
facilities for weaving other subjects (e.g. annotations and introductions) than
advices. The advantage of our approach over the weaving specification of these
languages is the ability of selecting advices and aspects in the advice-pointcut
bindings. Currently, none of above mentioned languages offers such a mecha-
nism.

In the most recent version of AspectJ [22], it is possible to attach annotations
to aspects and advices. Thus, a pointcut can designate the execution of an
advice based on an annotation. However, unlike our approach, advices still
cannot be selected and bound to pointcuts based on this information. Another
difference is the inherent expression power of the pointcut languages.
Compose* uses a Turing-complete general-purpose language (Prolog) with a
pre-defined library of useful predicates, whereas AspectJ uses a more strictly
defined, custom-defined pointcut language. Basically there is a tradeoff
between supporting powerful reasoning within the pointcut language (here,
Compose* offers more power) as opposed to reasoning about the pointcut
expressions (which is easier in AspectJ).

JQuery [16] is a flexible, query-based source code browser, developed as an
Eclipse plug-in. In JQuery, users can define their own queries to select certain
elements of a program. The query language of JQuery is defined as a set of
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TyRuBa [9] predicates which operate on facts generated from Eclipse JDT's
abstract syntax tree. The predicates of JQuery are dedicated for Java and the
factbase of JQuery is based on Java sources and bytecode files. In Compose*
we also use a predicate language to formulate queries for defining selectors.
The predicates of our selector language are dedicated for Compose* and the
factbase is based on the repository model of a Compose* project.

4.6.2 Discussion
One might ask why it is useful or necessary to derive annotations (like
TransientField in Listing 4.13) if their places can also be designated directly by
the pointcuts that could express the rules above. Using such pointcuts can in
fact be sufficient when these annotations are only used within pointcut expres-
sions of aspects. However, (derived) annotations can be used by third party
tools or frameworks as well. In many cases, we can derive whether a certain
annotation should be attached based on the existence of other annotations,
certain types of statements or structural combinations of program elements (i.e.
’software patterns’). In these cases, using derivation removes the need to
manually specify where annotations have to be attached (either in the concern
source or the source of the base application). Also, the use of (derived) anno-
tations can increase the separation between concerns. Basically, better modu-
larization is gained at the cost of an extra layer of indirection. Which choice is
best depends on the scenario - i.e. the need for better modularization is typi-
cally an issue in large software applications.

However, the consequence of this derivation technique is that there will be
ordering dependencies between the evaluation of queries and the superimposi-
tion of annotations. In [15], we analysed these dependencies and identified
cases where dependency problems may arise. Based on this analysis, we
designed an approach and implemented it as an algorithm to resolve the order-
ing dependencies and detect the possible dependency problems. We showed
that this algorithm will always terminate, either by providing a correct resolu-
tion of the dependencies, or detecting if the superimposition specification is
ambiguous. For further details, we refer to [15].

4.6.3 Contributions
In this chapter, we presented an extensive analysis of the pointcut-advice bind-
ing mechanisms of various aspect-oriented languages. Based on this analysis,
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we proposed an extension to the current superimposition specification of
Compose*, that can be realized in other languages in a similar manner. In the
new specification we applied queries, founded on a generic, predicate-based
language, that allow for designating both the places (i.e. structural join points)
where we want to weave, and the units (e.g. filtermodule, annotation) that we
want to weave.

We provided a trade-off analysis for each new abstraction that we introduced:
the weaving specification is more expressive and evolvable compared to the
existing binding mechanisms. By applying annotations (design information),
we improved the evolvability of the binding specification to a greater extent;
additionally, it is more intuitive to understand the composition by using design
information. On the other hand, we observed that the weaving specification
becomes less transparent (comprehensible) for programmers. We also
observed that the use of annotations requires disciplined programming to bind
the correct semantic properties to the appropriate program element. We believe
that both of these issues can be addressed by tool support. Intelligent IDEs can
improve the transparency problem by resolving and showing the implicit
dependencies among the units involved in the weaving process. The "human
error factor" related to the use of annotations can be lessened by using reason-
ing mechanisms and tools that can automatically derive annotation specifica-
tions, for example, based on control-flow or data-flow analysis. We consider
addressing these issues in future work.
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Chapter 5

Composing Aspects at

Shared Join Points

Aspect-oriented languages provide means to superimpose aspectual behavior on a
given set of join points. It is possible that not just a single, but several units of aspec-
tual behavior need to be superimposed on the same join point. Aspects that specify
the superimposition of these units are said to "share" the same join point. Such
shared join points may give rise to issues such as determining the exact execution
order and the dependencies among the aspects. In this chapter, we present a
detailed analysis of the problem, and identify a set of requirements upon mecha-
nisms for composing aspects at shared join points. To address the identified issues,
we propose a general declarative model for defining constraints upon the possible
compositions of aspects at a shared join point. Finally, by using an extended notion
of join points, we show how concrete aspect-oriented programming languages,
particularly AspectJ and Compose*, can adopt the proposed model.1

5.1 Introduction
The so-called join point model is an important characteristic of every AOP
language [7]. It defines a composition interface (“hooks”) - i.e. the types of
locations, where the behavior of a (sub)program can be modified or enhanced,
by superimposing aspectual (crosscutting) behavior. A join point is a specific
element in the structure of a program (e.g. a class) or a specific event in the
execution of a program (e.g. a method call). Almost all AOP languages allow
the composition of independently specified aspectual behavior (i.e. advice) at

1. This chapter (except sections 5.5 and 5.9) is based on work published in [10] and [9]. 
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the same join point, which we will refer to as a shared join point (SJP). The
composition of multiple advices at the same join point raises several issues,
such as: What is the execution order of the advices? Is there any dependency
between them? These issues are not specific to certain AOP languages but they
are relevant for almost every AOP language. 

This chapter presents a novel and generic approach for specifying aspect
composition at SJPs in aspect-oriented programming languages. We propose a
declarative specifications of both ordering constraints and controlling
constraints among aspects. In the following section, we will first introduce an
example, which will be used for explaining the problems that may occur when
composing aspects at SJPs, and present a detailed analysis of the problem. This
analysis results in a set of requirements. In section 5.3, for specifying aspect
composition at SJPs, we introduce a simple, generic model, which we term as
Constraint Model. Section 5.4 discusses how the constraint model is enforced.
Section 5.5 presents the applied algorithms. In section 5.6, we show how the
concepts of the constraint model can be integrated with aspect-oriented
programming languages. Section 5.7 provides details about the implementa-
tion. Section 5.8 discusses the related work. Section 5.9 provides an assessment
of our approach in terms of software quality factors, such as comprehensibility,
predictability, adaptability and modularity. Finally, section 5.10 draws conclu-
sion and discusses the contributions of this chapter.

5.2 Problem Analysis
The superimposition of multiple advices on a particular join point involves
several issues. To explain the possible problems, we introduce an example
application, which will be used throughout the chapter.

5.2.1 Example
The example consists of a simple personnel management system. Class
Employee, shown in Figure 5.1, forms an important part of the system. In partic-
ular, we will focus on the method increaseSalary(), which uses its argument to
compute a new salary.

Our example has been defined as a scenario, which introduces a new require-
ment at each step. Applying the principle of separation of concerns, we imple-
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ment each of these requirements by separate aspects that will be superimposed
on the same join point (as well as others): in this example, after the call of the
method increaseSalary() of class Employee2.

Figure 5.1 Class Employee and its superimposed aspects

We will use AspectJ for illustrative purposes. At each step, we show the possi-
ble problems that can occur at the SJP. We present an analysis of these prob-
lems and formulate the requirements towards their solution.

5.2.2 Primary Requirements

Step 1 – Monitoring Salaries
Assume that the first requirement in this scenario is to introduce a logging
system for monitoring changes in salaries. This requirement is implemented by
the aspect MonitorSalary in Listing 5.1.

In line 3, the pointcut salaryChange will designate every join point that is a call
the method increaseSalary of class Employee. Whenever a salary is increased,

2. Note that not every aspect will be superimposed on the same set of join points. However, for all 
aspects there is a common join point which can be designated by the pointcut "call(void 
Employee.increaseSalary(int))" in AspectJ. 

«aspect»
MonitorSalary

«aspect»
DBPersistence

«aspect»
CheckRaise

«aspect»
XMLPersistence

join point: (after) call(void
Employee.increaseSalary(int) )

Employee

increaseSalary()
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the advice (lines 6-11) will print a notification, including the information about
the employee and the type of salary change.

Step 2 – Persistence
The second requirement in the scenario states that certain objects must store
their state in a database. After each state change in the corresponding objects,
the database has to be updated as soon as possible. We consider persistence as
a separate concern to be implemented as an aspect3. The abstract aspect
DBPersistence contains the advice that performs the update operation on a
persistent object:

1) public aspect MonitorSalary{
2) …
3) pointcut salaryChange(Employee e, int l):
4)      target(e) && call(void increaseSalary(l));
5)
6)    after(Employee person, int level):
7)      salaryChange(person, level){
8) System.out.println(“Salary increased to level"+ 
9)                            level + ” for person ”+ person);
10)      …
11) }
12) }

Listing 5.1 The advice and pointcut of the aspect MonitorSalary

3. There are several issues, such as connection, storage, updating and retrieval that have to be considered
when dealing with persistence. For simplicity, we will focus here only on updating. More details about
implementing persistence by aspects can be found in [12].

1) public abstract aspect DBPersistence 
2) pertarget (target(PersistentObject)){
3)    
4)   abstract pointcut 
5) stateChange(PersistentObject po);
6)
7) after(PersistentObject po): stateChange(po){
8) System.out.println("Updating DBMS...");
9) po.update();
10)    … }
11) }

Listing 5.2 The abstract aspect DBPersistence
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The following definition applies the abstract aspect DBPersistence to class
Employee:

These two aspects together implement the necessary behavior for making class
Employee persistent. If the data of a persistent object changes, the correspond-
ing information must be updated in the database too (Listing 5.2, the advice of
the aspect). Changes to the state of the object are captured by the pointcut
designator stateChange(PersistentObject po), which is implemented in
DBEmployeePersistence. Note that the aspect MonitorSalary, which was required
for the first scenario step, and the DBEmployeePersistence are now superim-
posed at the same join point. 

Even though in most AOP languages aspects can be specified independently,
once they are superimposed on the same join point, they may affect each others
functionality. The problem may occur when both aspects and classes are added
to a system. Figure 5.2 illustrates these two cases. On the left hand side, we
show that superimposing a new aspect (CheckRaise) introduces a SJP, together
with the previously superimposed aspect MonitorSalary. On the right hand side
of the figure, it is illustrated that adding a new class can also introduce a new
SJP, particularly when there are wildcards in pointcut designators.

Figure 5.2 Examples of creating possible SJPs

1) public aspect DBEmployeePersistence extends DBPersistence{
2)    /* Class Employee implements the interface 
3)     * of PersistentObject */
4) declare parents: 
5)       Employee extends PersistentObject;
6)
7) pointcut stateChange(PersistentObject po): 
8) call(void Employee.increaseSalary(int)) 
9)       && target(po) && … ;
10)   … 
11) }

Listing 5.3 An implementation of DBPersistence: DBEmployeePersistence

Employee Monitor
Salary

CheckRaise

Employee Monitor
Salary

CheckRaise
Manager
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Problem: Because the database needs to be updated as soon as possible after
the state change occurs in the object, the advice of the aspect DBPersistence has
to be executed before the advice of the aspect MonitorSalary.

Analysis: As the example illustrates, due to semantic interference, different
execution orders among aspects at SJPs may exhibit different behavior. We
distinguish the following categories of interference:

(A) No difference in the observable behavior – For example, consider two
aspects where both do not refer to the effect of the other but maintain solely
their own state. Changing the execution order of the two aspects at a SJP will
not be observable after the execution of the advices of these two aspects. 

(B) Different order exhibits different behavior – We have distinguished three
subcategories of this category:

(B1) The change in the order affects the observable behavior but there is no
specific requirement what the behavior should be – As an example of this case,
assume that one aspect is designed to trace the change in salary and the other
one to notify the employee’s manager about any change in the salary. If the
requirement is solely “both aspects should execute”, it does not matter which
aspect executes first. If there is an explicit requirement, however, the following
category may apply:

(B2) The order of aspects does matter because there is an explicit requirement
that dictates the desired order of aspects – A typical example is the interference
between the aspects MonitorSalary and DBPersistence. The order between these
aspects may seem to be not relevant, because they are defined as independent
aspects. However, for DBPersistence there is a requirement: it should execute
as soon as possible after a state change4 occurs. Since there is no such require-
ment for MonitorSalary, this implies that DBPersistence must be executed before
MonitorSalary.

(B3) There is no explicit requirement for an order, but certain execution orders
can violate the desired semantics of the aspects. For instance, when multiple

4. In fact, in this case the rationale for this feature has to do with the observable different behavior in the
case of crashes.
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advices lock shared resources, deadlocks may occur in certain execution order
of advices. This means that due to the semantics of the advices, there is in fact
some kind of dependency between these advices and implicit ordering require-
ments have to be considered.

Requirement 1: Ordering Aspects – To ensure the required behavior of the
superimposed aspects at SJPs, it must be possible to specify the execution
order of the aspects5. 

Step 3 – Checking Salary Raises
Assume that the next requirement in this scenario is to ensure that an
employee’s salary cannot be higher than his/her manager’s salary. Thus, a raise
is not accepted if it violates this criterion. This is enforced by the aspect
CheckRaise:

5. Some AOP languages, for example AspectJ, provide means to specify precedence between aspects,
which implies an execution order.

1) public aspect CheckRaise pertarget(target(Employee) ){
2) private boolean _isValid;
3) public boolean isValid(){ return _isValid; }
4)
5) before(Employee person, int level):
6) MonitorSalary.salaryChange(person,level){
7) _isValid = true; 
8) } // workaround for conditional execution
9)
10) after(Employee person, int level): 
11) MonitorSalary.salaryChange(person,level){
12) Manager m=person.getManager();
13) if ((m!=null) && (m.getSalary() <= 
14)          person.getSalary()) ){
15)       //Warning message
16) System.out.println("Raise rejected”);…
17)          //Undo
18)         person.decreaseSalary(level);
19) //workaround for conditional execution
20)         _isValid = false;
21)   }}}

Listing 5.4 The aspect CheckRaise 
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The advice of this aspect (Listing 5.4) will check the new salary after the
method increaseSalary() is executed6. If the rule is violated, a warning message
will be printed and the salary will be set back to its original value.

Problem: Adding the aspect CheckRaise affects the composition; if this aspect
fails, the DBPersistence aspect must not be executed because the employee’s
data has not changed. That is, the execution of the aspect DBPersistence
depends on the outcome of the aspect CheckRaise.

Analysis: Implementing conditional execution of aspects is not trivial since the
AOP languages do not provide explicit language mechanisms for this purpose.
For example, in AspectJ we can use workarounds, such as maintaining Boolean
member variables in aspects, but effective (incremental) composition cannot
be achieved in this way. A possible workaround is illustrated by the highlighted
code in Listing 5.4. As the example will show, it is necessary to introduce extra
advices to maintain the Boolean variables and additional if-statements in the
existing aspects to handle these variables. Consider, for instance, Listing 5.5
which shows a modified version of DBPersistence. A new if-statement has been
added to check if the raise has been accepted by the aspect CheckRaise before
executing the original behavior of the advice.

Another disadvantage of this solution is that aspects will depend on each other.
That is, to realize the expected behavior of the composition, aspects will need
to refer to each other directly. The invocation of the method isValid in Listing
5.5 is a typical example of such a dependency. In addition, problems will also
occur when CheckRaise, for some reason, is removed from the project.

Requirement 2: Conditional execution – This requirement refers to a case
when the execution of an aspect depends on the outcome of other aspects. Only
if the outcome of these aspects satisfy a certain criterion, the dependent aspect

6. An alternative solution could be the prevention of an invalid raise using a before advice (as a pre-
condition) instead of an after advice. However, this is not feasible in all cases; e.g. it is undesirable to
repeat complex salary calculations, as this creates replicated code and may also incur a performance
penalty. Another argument is that the method increaseSalary() may be overriden and one cannot rely
on the current body.
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is allowed to execute. To avoid workarounds and their shortcomings, direct
language support is needed for expressing this type of dependency.

Step 4 – Updating XML Representations
Assume that the fourth requirement in the scenario states that if the database is
not available, persistence must be implemented using XML files. This means,
for each instance of Employee, an XML file has to be generated. If the regular
persistence does not take place (e.g. because of database connection problems),
the file must be updated after each state change of an instance of class
Employee. This is realized by the aspect XMLPersistence in Listing 5.6. This
aspect has one advice, which calls the method that rewrites the XML file if the
salary (or other data) changes.

1) public aspect DBPersistence 
2) pertarget (target(PersistentObject)){
3)
4) private boolean _isUpdated;
5)    public boolean isUpdated(){ return _isUpdated; }
6)
7)    …// workaround for conditional execution
8)
9) after(PersistentObject po): stateChange(po){
10) if (CheckRaise.aspectOf((Object)po).isValid()){
11) System.out.println("Updating DB...");
12) po.update(po.getConnection());
13) }
14) }
15) }
16)

Listing 5.5  The modified version of DBPersistence composed with 
CheckRaise

1) public aspect XMLPersistence {
2) after(XMLPersistentObject po): stateChange(po){
3) if ((CheckRaise.aspectOf((Object)po).isValid())
4)  &&(!DBEmployeePersistence.aspectOf(
5)            (Object)po).isUpdated())
6)   po.toXML();
7)     }
8) }

Listing 5.6 The aspect XMLPersistence
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In this example, XML files must be updated only if the aspect DBPersistence
has not been able to update the database. This means that XMLPersistence
must be executed only if DBPersistence has failed and CheckRaise has
succeeded.

We identified several dependencies among aspects at SJPs. If there is no
explicit language support for expressing the dependencies, they have to be
implemented as workarounds in the realization of aspects. This has generally a
negative impact on adaptability and reusability. In this chapter, we argue that
there is a need for introducing new operators for expressing composition of
aspects at shared join points. These operators must be capable of expressing
both ordering among aspects and conditional execution of aspects.

5.2.3 Software Engineering Requirements
In the previous section, we presented the requirements from the aspect interfer-
ence viewpoint. In this section, we list software engineering requirements that
may play an important role in the quality of programs.

Modularization of composition specifications
From a software engineering perspective, not only the orthogonality of opera-
tors but also the structure and modularization of composition specifications
play an important role. In particular, new dependencies are introduced since the
specifications need to refer to specific join points, advices and aspects. 

Figure 5.3 Four alternative modularizations of constraint specifications; A, X 
and Bi are aspect specifications, Ci are composition specifications, and the 

grey squares (1 to 4) indicate alternative specification loci.
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Figure 5.3 illustrates a situation where between the aspect A and a series of
aspects B1 to Bn, the composition specifications C1 to Cn apply, respectively.
The figure shows four alternative modularizations of the composition specifi-
cations; each of these is shown as a grey square, labelled with a different
number. We will discuss each of these numbered alternatives briefly:

1. A combined specification of C1 to Cn is embedded in the specification
of the aspect A; consequently, this aspect will depend on (refer to) B1
to Bn. The introduction of a new aspect, say Bm, can either be handled
automatically by the use of an open-ended specification (as will be dis-
cussed in section "Evolvability: Supporting open-ended specifica-
tions"), or it may require an additional effort to modify the
corresponding specification of the aspect A.

2. The composition specification is partitioned and the corresponding
specifications are located in B1 to Bn, respectively; as a result, each of
these aspects Bi will now depend on A. A newly introduced aspect, say
Bm must then incorporate the composition specification Cm.

A critical issue in the above two cases is that the aspects A and Bi now include
knowledge about how they depend on each other. In certain cases, this may be
exactly what is required, but for example if the two aspects come from different
(third-party) libraries, this is not desirable.

3. The composition specification is represented in a separate module
(labeled X in the figure); In this case, the aspect specifications do not
depend on each other. X can be either defined as a dedicated module
for describing the composition of aspects, or it is a part of another
module (e.g. an aspect or a class). Obviously, X will now depend on
both A and B1 to Bn. Changes to any of these may require an update to
X. This allows for localizing composition specifications in a set of
dedicated modules, if desired. 

4. All the composition specifications are collected in one global module
(c.f. a configuration file); this is a special case of alternative (3), and
has the same dependency issues. In this case, all composition specifi-
cations are collected in a single location, which makes it easier to get
an overview. However, scaling up to a large system will be more diffi-
cult, as the module consequently becomes larger. Obviously, each
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change to the structure of the system requires a potential revision of
this global module.

Based on this analysis, we conclude that it is not desirable to offer a solution
which satisfies only a single case; AOP languages should offer a rich set of
language mechanisms for composition specifications so that the programmers
may choose the right modularization alternative for their problem.

Soundness: Identifying inconsistencies
An important design consideration is that programmers should be warned if
their specification is not sound. A specification is sound when it contains no
inconsistencies. This is especially important if the complete specification is
made up from several sub-specifications defined at different locations. For
example, creating circular relationships is a typical error that can occur in such
a case. When a programmer creates a new composition specification, he or she
must be warned if the new specification is inconsistent with other specifica-
tions.

Evolvability: Supporting open-ended specifications
Open-ended specifications in this context ensure that a specification is resilient
to changes. Open-endedness may appear in the following forms:

1. The specification directly refers to an abstraction (a language element)
that is not (yet) defined. In this case, open-endedness means that the
specification is still correct and usable, even though some abstractions
that the specification refers to have not been yet defined. Clearly, this
requires a well defined meaning for the ’undefined’ case.

2. The specification indirectly (by defining a number of selection crite-
ria) refers to a set of potential abstractions. In this case, open-ended-
ness means that, if a new abstraction appears in the environment and
satisfies those criteria, it will be in the set of actual abstractions desig-
nated by the specification.

If developers use open-ended specifications for composing aspects in SJPs,
both types of specifications will be able to handle aspects that are referred to,
but not yet present in the system.
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Lack of specification: non-deterministic execution
If there is no complete specification of the execution order, but sequential
execution is required, the question remains in what specific order to execute the
actions. Various types of  'default' orders can be defined; however, there is
another alternative that should be considered. 

The lack of specification may originate from two sources: uncertainty and
omission (programmers merely forgot to specify order). Whatever the case
may be, the order of the execution of aspects will not be clarified. A non-deter-
ministic execution order between aspects, for which the order was not specified
for some reason, can express the lack of ordering information. This means that
each time the control flow reaches the join point, aspects are selected randomly
for execution. In this way, non-determinism can express the uncertainty in the
execution order. It is important that the programmers are warned about the non-
deterministic execution so that they can specify a particular order if necessary.

There are domains (e.g. distributed and concurrent systems) where non-deter-
minism can be favourable. However, non-determinism involves important
implementation issues such 'real' random selection and performance.

5.3 Constraint Model 
The problem of shared join points is general to AOP languages. For this reason,
we propose a generic solution model that can be possibly built into various
AOP languages. The aim of this section is not to present a formal foundation,
but to illustrate the approach in an intuitive and concrete, but language-inde-
pendent way. This requires a set of assumptions about AOP languages, which
are presented in the subsection Basic Entities. The rest of this section presents
the composition constraints and other means to specify composition of aspects
at SJPs.

Our proposed model for composing aspects at SJPs is based on declarative
specifications of constraints. Constraints define dependencies between actions.
We distinguish between three main categories of constraints: structural
constraints, ordering constraints and control constraints. Structural
constraints specify what actions have to be or cannot be mutually present at a
shared join point. Ordering constraints specify a partial order upon the execu-
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tion of a set of actions. Control constraints specify conditional execution of
actions.

5.3.1 Basic Entities 
In this section, we outline the key elements of AOP models, that we consider
relevant to our purpose. In order not to be too restrictive, it is important to make
only a few assumptions about these entities. In particular, we focus on join
points and advices7.

Join Points 
AOP languages have different means to designate join points. Thus, the range
of the possible join points that can be designated varies from language to
language. We do not make further assumptions about the designators. We just
assume that there are certain events (e.g. calling a method) in the execution of
a program where aspectual behavior can be executed. 

Actions
In our model, the aspectual behavior (i.e. advice) that can be executed at join
points, is abstracted under the concept of action. An action has a name that is
used for identification. Advices will be mapped to actions when we adapt the
constraint model to a particular aspect-oriented language. We consider the
mapping of after and before advices as trivial cases. Around advice will be
mapped to two actions; a before action and an after action8.

An action may have a result value9. For the purposes of our model, we only
allow Boolean result values. These typically indicate a success (true) or a fail-
ure (false) of the action. A key reason for this restriction to Boolean values is
that it guarantees uniform interfaces between the actions and constraints.
Allowing for more freedom in choosing result types would create undesired
coupling, since constraints would become dependent on –the compatibility of–
the result types of the actions. For instance, in the case of the example problem
where persistence was required, the action that is responsible for updating the
database will indicate a failure if it cannot connect to the database for some

7. These two entities have been identified among the main ‘ingredients’ of AOP languages [7].
8. Note that this mapping does not cover all the detailed semantics of around advice but it is

sufficient to reason about the ordering of advice executions. 
9. A result value is independent from the original return type of an advice.
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reason. If an action does not have a result value, we use by default the void value
for this purpose. In our model, the result values of actions will be used to
express certain behavioral dependencies among actions at the same joint point. 

By default, every action assigned to the join point will be executed, unless
specified otherwise. The execution of actions is sequential10, that is, only one
action executes at a given time. An action may not execute multiple times. How
to handle this is considered a language-design issue. In the absence of ordering
constraints, the execution order of the actions is undefined11. Typically, a fixed
order can be determined at compile-time, and be applied for each execution.
Alternatively, a random order of actions may be generated for each execution;
this can result in a non-deterministic execution order.

5.3.2 Structural Constraints 
Structural constraints aim at specifying what actions have to be or cannot be
mutually present at a shared join point. 

Inclusion and Exclusion of Actions
There are two types of structural constraints; their definitions are the following:

include(x,y) – the presence of action x (i.e. x is actually woven) at the join
point implies that action y has to be present at the same join point as
well.

Note that the constraint include is unidirectional; it exerts its effect only in one
direction. If action y is present at compile time, action x can be absent or
present. For instance, include(x,y) does not imply that x should (or not) be
present at the join point if y is present.

The constraint include has a transitive property: include(x,y); include(y,z) implic-
itly implies the include(x,z) constraint.

10.Parallel execution is an orthogonal issue; if synchronization between (actions executing in)
multiple threads is needed, this is not a different problem from regular issues of thread-safe
code. In this chapter, we focus on the sequential execution of aspects. Parallel execution of
actions at shared join points is outside the scope of this work. In particular, we have not en-
countered any motivation for exploring this further.

11.In this case, the programmer should be warned about possibly unspecified orderings. 
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exclude(x,y) – the presence of action x (i.e. x is actually woven) at the
join point implies that action y has to be absent at the same join point.
If action y is present action x has to be absent, otherwise the contraint
is not satisfied. This means that the presence of any of the actions
mutually excludes the presence of the other action .

Hence, the constraint exclude is bidirectional. For instance, exclude(x,y) imply
that y cannot be present at the join point if x is present, and the other way
around, x cannot be present at the join point if y is present already.

Conflicts among Structural Constraints
We have identified two types of conflicts that can arise in the specification of
structural constraints:

Straight Conflict
Two or more constraints have opposing statements in the specification. For
instance, the following two constraints are in straight conflict: include(x,y);
exclude(x,y). That is, one constraint states that y should be present at the join
point, while the other one states the opposite. 

Due to the transitive property of the include constraint, there can be more
complicated cases that lead to straight conflicts in the specification. As an
example, consider the following specification: include(x,y); include(y,z);
exclude(x,z). The source of conflict is that include(x,y); include(y,z) implies
include(x,z) which is the opposite of exclude(x,z).

Reverse Conflict
Two or more constraints have reverse statements in the specification. As an
example, consider the following two constraints that are in reverse conflict:
include(x,y); exclude(y,x). In this specification, the first inclusion constraint
states that the presence of x needs the presence of y as well. However, the
second exclusion constraint states that the presence of y forbids the presence of
x at the join point. 

Again, due to the transitive property of include there may be more complicated
cases that cause reverse conflict in the specification. As an example, consider
the following specification: include(x,y); include(y,z); exclude(z,x). The source of
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conflict is that include(x,y); include(y,z) implies include(x,z) that is in reverse
conflict with exclude(z,x).

5.3.3 Ordering and Control Constraints 

Ordering Constraints 
Ordering constraints specify a partial ordering over actions. When several
actions are superimposed upon the same join point, all these actions are
assumed to execute once, in an unspecified order. This implies that there can
be many possible valid orderings. By applying ordering constraints, the
number of possible orders can be decreased. For example, assume that four
aspects are superimposed on the same join point, as shown in section 5.2. With-
out any ordering constraints, the number of possible execution orders is 4!=24.
To be able to specify ordering, we need to introduce an ordering constraint.

Constraint pre
A pre constraint between two actions specifies that the execution of constrained
action should precede the execution of another action at the SJP:

pre(x,y) – The followed order of actions is such that x should never be
executed after the execution of y. Hence, y should be executed only
after x has been executed at this join point12. (The two actions do not
have to follow each other directly; other actions can be executed
between them.) 

We use Table 5.7 to illustrate the definition of constraints that are applied to
two actions, respectively x and y. The topmost row of the table shows the
applied constraints. Let us now focus on the column of the constraint pre. The
leftmost column lists the possible values (true, false and void) that the action x
can have after its execution. The last item in this column is the special case
when the action x has not been executed for some reason. According to the
applied constraint and the return value of x, the remaining cells of the second
column from left indicate if y is allowed to execute after the execution of x or
not. We can see in this figure that the pre constraint is not influenced by the

12.In general, constraints do not allow for the execution of an action if the dependent action
did not execute. In other words, we deal with hard constraints. To be able to specify open-
ended constraint specifications, we introduce additional functions that are discussed in sec-
tion 5.3.4. 
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return value: in each case y can be executed after x is executed. The last cell in
this column shows that y is not allowed for execution if x did not run.

In Table 5.8 we illustrate how the pre constraint decreases the number of possi-
ble orders. We use the case that we have introduced in section 5.2.2. As a short
hand notation, we show only the first letter of the name of an action. We
assume that all four actions (C = CheckRaise, D = DBPersistence, M =
MonitorSalary, X = XMLPersistence) are superimposed upon the same join point.
In the middle column, we list the constraints applied, and correspondingly in
the right column we list all the possible orders which are valid. In the first row
(Case I.) we apply only one constraint specifying that DBPersistence should be
executed before MonitorSalary. The last six possible orders of Case I are those
cases where the execution of DBPersistence and MonitorSalary are interleaved
with other actions (C and/or X).

Table 5.7 The execution semantics of the composition constraints: y:yes 
means that y can be executed according to this specification; yreturn=R means 

that return value of y is substituted with R

pre(x,y) cond(x,y) skip(x,y,R)

x: true y: yes y: yes y:no, {yreturn = R}

x: false y: yes y: no y: yes

x: void y: yes y: no y: yes

x: did not run y: no y: no y: yes

Table 5.8 The possible execution orders decrease as new constraints are 
added

Case Constraints Possible Orders

I. pre(D,M). DMCX, CDMX, CXDM, DMXC, 
XDMC, XCDM 
DCMX, DCXM, CDXM, DXMC, 
DXCM, XDCM
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In Case II., we add a new pre constraint, which specifies that DBPersistence
should precede XMLPersistence as well. By applying two ordering constraints,
the number of valid orders are reduced to six in this case. In the third row (Case
III), after applying three constraints, there are only two alternatives left. Here,
only the order between MonitorSalary and XMLPersistence is not fixed.

Control Constraints 
Control constraints express conditional execution dependencies between
actions. The general form of a control constraint is the following:
Constraint( Condition, ConstrainedAction). The Condition is represented by
an action or a Boolean expression built up from actions with logical connectors
(AND, OR, NOT). Control constraints use the return value of the executed
actions for constraining the execution of ConstrainedAction. 

Constraint Cond
The cond constraint specifies that an action is conditionally executed depend-
ing on the return value of another action. The definition of the cond constraint
is the following:

cond(x,y) – Action y can execute only if x returns true. That is, y will not
execute in case of the following four conditions: (1) if x returns false;

(2) if x returns void; (3) if x has not been executed, or (4) if x is not
present at the join point. 

For the cond constraint, a Boolean return value is desired. Hence, if strong
typing is applied to the return values of actions and the arguments of
constraints, the void case can be avoided. We have deliberately included the

II. pre(D,M),
pre(D,X).

CDMX, CDXM, DCMX, DCXM, 
DMXC, DMCX

III. pre(D,M),
pre(D,X),
pre(C,D).

CDMX, CDXM

Table 5.8 The possible execution orders decrease as new constraints are 
added

Case Constraints Possible Orders
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return value void as a legitimate case to make the system more flexible and
applicable to a wide range of languages: (a) void is the default return value if a
programmer does not indicate failure of an action; (b) the return value void can
be intentionally used to indicate that the action results neither in success nor in
failure.

The column of cond(x,y) in Table 5.7 illustrates the meaning of the cond
constraint: y can execute only if x succeeded (i.e. x returned true). Note that
when x did not execute, cond does not allow for the execution of y. 

Table 5.9 Using the cond constraint

Table 5.9 demonstrates the effect of the cond constraint. In Case IV, we have
changed the third constraint of Case III to cond(CheckRaise, DBPersistence).
Depending on the return value of CheckRaise, there are two sets of possible
orders. When CheckRaise returns true (the first row of Possible Cases) the
possible orders are the same as the one of the pre constraint. However, when
the return value of CheckRaise is void or false (the second row of Possible
Cases) DBPersistence will not be executed. The third row “C did not run”,
shows that both CheckRaise and DBPersistence do not execute in this case.

Constraint Skip
The skip constraint specifies that the execution of an action may be skipped,
based on the result of the logical expression. The definition of the skip
constraint is the following:

skip(x,y,R) – The execution of y is skipped and y marked as ‘executed’
with the return value R, only if x yields true. 

R substitutes the original return value of y if y is skipped. For example, R can
be true, false or void, but an arbitrary logical expression can also be used to
express the return value.

Case Constraints Possible Cases

IV. pre(D,M),
pre(D,X),
cond(C,D).

C = true             > CDMX, CDXM
C = false            > CMX, CXM
C = did not run >  MX, XM
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In Table 5.7, we show the behavior of skip: y is skipped only if x has been
succeeded (i.e. x was true). In addition, the return value of y is substituted with
R.

Table 5.10 Using the skip constraint

In Table 5.10, the first row under the cell Possible Cases shows that when both
CheckRaise and DBPersistence succeed, XMLPersistence is skipped as if it has
returned a false value. In the middle row, CheckRaise succeeds but
DBPersistence fails, so XMLPersistence is executed. The third column on the
right hand side shows that XMLPersistence will also be executed in the absence
of DBPersistence. 

Note that other possible scenarios may occur for both control constraints. We
have chosen only those scenarios that we considered important for the illustra-
tion of the behavior of control constraints. With the cond constraint the execu-
tion of an action is controlled on the basis of information that originates from
the past. Basically, the cond constraint formulates a guard condition on the
execution of the constrained action. Using the skip constraint it is possible to
"skip" the execution of an action that and mark it is an executed one with a
given return value. Although it is possible to introduce additional constraints,
based on the example cases that we have carried out, we believe that the three
constraints pre, cond and skip are powerful enough for expressing a large cate-
gory of conditional constraints.

Composition Rules for Multiple Constraints
The constraints discussed so far, are to a large extent orthogonal to each other.
However, when multiple constraints apply to the same action, certain rules
must be considered to resolve the composition of constraints.

Case Constraints Possible Cases

V. pre(D,M),
cond(C,D),
skip(D,X,F).

C∧D  = true             >    CDM{X←F}
C∧!D = true             >    CDMX, CDXM
C = false ∧ D=did not run  >  CX
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Precedence of Constraint Types 
If different types of constraints apply to the same action, e.g. skip(x, z, true);
cond(y, z) the constraints are evaluated in a given order according to their type.
The precedence order of the three constraints is the following (starting with
highest priority): pre, skip, cond. It is important to note that when a new type of
constraint is introduced, its relative precedence has to be determined according
to this list.

Composition of Constraints 
Control constraints are by default conjoined; an action can be executed only if
none of the constraints applied to it forbids its execution. For example, in a set
of constraints, if there is a cond constraint that does not allow for execution, the
action to which it applies cannot be executed. As an example, consider the
following pair of constraints: cond(x,z); cond(y,z). Since both constraints are
applied to z, in order to execute z both x and y have to be true. In fact, the above
mentioned pair of constraints can be rewritten into the following one: cond(x ∧
y, z). On the other hand, note that the execution of z can be skipped and marked
as executed by an additional skip constraint, since the skip constraint has a
higher precedence than the cond constraint. 

If complex Boolean expressions are used in cond constraints, they are
composed with AND logic as well. Consider the following example, where two
cond constraints with different Boolean expressions are applied to the same
action: cond(a ∨ b, z); cond(!c, z). These two constraints can be rewritten in the
following manner: cond( (a ∨  b) ∧ !c, z).

Multiple Skips 
In case of multiple valid skip constraints with different substitution values, a
run-time conflict occurs, since it is ambiguous which value should be used for
substitution. As an example, consider the following pair of constraints:
skip(x,z,True); skip(y,z, False). Since both x and y can result in true after their
executions, it is not obvious if the return value of z should be substituted with
true or false. Since this problem can be determined only after x and y have been
executed, we indicate this by a runtime-conflict when it is necessary. Note that
there can be simple conflict situations that can be determined statically as well.
For instance, skip(x,z,True); skip(x,z, False) is a statically detectable conflict,
since different substitution values are used with identical conditions. 
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Cascading Constraints 
The sequential composition of actions through constraints can have cascading
effects. For instance, consider cond(A, B); pre(B,C) as an example. If B is not
executed it implies that C will not be executed either. 

5.3.4 Hard and Soft Specifications 
Both ordering and control constraints introduced previously represent ‘hard’
forms of specification. This means that the semantic of a constraint does not
allow  the execution of the constrained action if any action that is part of a
condition is not present at the join point. That is, the semantics of constraints
aim at ensuring the presence of an action; this may be important for the sake of
safety and correctness. 

However, a ‘soft’ form of specification is also beneficial from the perspective
of evolvability and maintainability. Soft specifications can ‘tolerate’ the
absence of an action; hence, they can handle situations where the action is
referred to in the specification but not present in the system yet (or anymore).
This feature can be important to provide open-ended specifications. In the
following section we will show soft and hard converter functions that can be
used within the scope of constraints to achieve soft specifications.

Soft Converter Functions 
Soft converter functions can imitate that an absent action was actually present
at a shared join point and executed with a given return value. We propose three
types of converter functions, differing in the return value that they provide:

1. %(action) – returns void value, short notation: %action
2. %t(action) – returns Boolean true value
3. %f(action) – returns Boolean false value

Listing 5.11 Soft converter functions

Example usage:
cond(%t(x),z) – If action x is not present it will be interpreted as if it was

executed and returned true value.  In this way, the constraint will
behave ‘normally’ and execute z even if action x is not present.
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pre(%y, z) – If action y is not present, it will be interpreted as if it was
executed and returned void value. In this way, the constraint will allow
the execution of z even if action y is not present. If the soft converter
function is not applied, the absence of y will not allow the execution of
z based on the semantic of pre (see Table 5.7).

Note that the scope of a converter function is the constraint in which it was
applied. This means that other constraints will not see this conversion and
different constraints can apply different converter functions.

A language mapped to the constraint model can support open-ended specifica-
tions to provide default constraint specifications that are evolvable (i.e. less
fragile to changes when aspects are added to, and removed from a project). For
instance, every unit that corresponds to an action and takes part in a pre
constraint can be ‘soft-converted’ with the % function, unless there is another
specification that overrules this13. 

Hard Converter Function
We consider it important to provide safe specifications when it is needed. The
hard converter function is default converter function used in constraint specifi-
cations:

• #(action), short notation: #action

Example usage:
pre(#y, z) – if action y is not present, the ordering constraint ‘breaks

down’ and does not allow for the execution of z either. That is,
pre(#y,z) equals  pre(y,z).

5.3.5 Summary
Practically, each constraint language narrows down further the possible
composition and execution of advices. As an overview of the whole constrain-

13.For instance, the declare precedence construct of AspectJ uses also open-endedness in its
specification: the weaver does not ‘complain’ if an aspect referred by the specification is ac-
tually not woven.
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ing process, the following summary describes the steps of the enforcement of
constraints:

1. Structural constraints First, based on the structural constraint speci-
fications, the weaver signals when an aspect requires or excludes the
presence of other aspects.  

2. Ordering constraints Based on the ordering constraint specifications,
the weaver generates a possible order of the superimposition of
advices (cf. actions) and weaves the advices based on this order.

3. Control constraints Based on the control constraint specifications,
the weaver performs a sequential, conditional execution of advices
depending on the execution of the related advices (in runtime).

5.4 Dependency Graphs and Algorithms
In this section we describe how a given set of control constraints applied to the
same join point are enforced. This involves two steps: (1) generating a valid
execution order (which may be done statically), and (2) managing execution
according to the control constraints. We introduce the notion of dependency
graphs as a representation of the set of constraints. 

5.4.1 Dependency Graph
A dependency graph (Figure 5.4 illustrates an example) consists of nodes that
represent actions, and directed edges that represent the constraints between two
actions. Edges always point from the dependent node to the node on which it
depends. Edges have labels to denote the type of the constraint. A dependency
graph always has a root node, denoted by a dashed rounded rectangle. Dashed
edges point to the root node, from all the actions that are allowed to execute
first; i.e. actions that have no preceding actions. They represent a pre constraint
that is assumed for these actions by default. 
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Figure 5.4 shows the dependency graph of Case I. In this case only one pre
constraint has been specified between MonitorSalary and DBPersistence. Thus,
there are three possible starting actions in Case I.

Figure 5.4  Dependency graph of Case I.

As another example, Figure 5.5 represents the dependency graph of four
constraints that specify the composition of aspects as required in the section
5.2.2. There is only one possible starting action, CheckRaise. DBPersistence
executes only if CheckRaise succeeds (denoted by the dotted arrow, and
cond(C,D) between CheckRaise and DBPersistence). XMLPersistence will execute
only if DBPersistence does not execute (or fails) and CheckRaise succeeds
(denoted by the dotted arrow, and  skip(D,X, void) between DBPersistence and
XMLPersistence). In all the other cases XMLPersistence will not execute. There
is a pre constraint between the two aspects, since it was required that
MonitorSalary must not execute after DBPersistence. The order between
MonitorSalary and XMLPersistence was not specified; hence, any of these two
can execute first. 

Figure 5.5 The dependency graph of Case V.b
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5.4.2 Algorithm for Ordering Actions
Given a set of constraints between actions at a shared join point, one or more
possible execution orders should be generated. This can be achieved by travers-
ing the dependency graph, where all constraints have been mapped to pre
constraints; all other semantics of constraints are dealt with by the execution-
managing algorithm14.

The algorithm that we show performs a topological sort [4] of nodes, including
cycle detection. Instead of explaining the structure of the algorithm in detail,
we use a simple example graph to show in an intuitive way how the traversal
takes place and the order is generated. To this aim, Figure 5.6 demonstrates a
traversal of a simple graph built up from the constraints pre(C,D), pre(C,X),
pre(X,M) and pre(D,M). This a possible ordering of the scenario that we discussed
in section 5.2.2 where C = CheckRaise, D=DBPersistence, X=XMLPersistence and
M=Monitoring. 

Figure 5.6  An example for traversing a graph

To generate an order, the traversal algorithm looks for a node for which all
parents have been visited. (A node p is a parent to node n if there is an edge
pointing from n to p.) In step 1, the root node is the only one that satisfies that
condition. Thus, the root node is selected as the current node. When a node is
successfully selected as the current one it is added to the end of the queue that
represents the execution order. Hence, the root node will be the first item in this

14. Section 5.5 presents the details of the applied algorithms.
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queue. In the second step, the node C is selected as the current node, since this
is the only node that has only visited parents (the root node has been visited and
placed in the execution queue). The node C will be added to the end of the
queue. In the third step, there are two nodes, X and D, that have only visited
parents. If more than one node meets the criteria for the selection there are
more possible execution orders that are valid to the given constraints. In this
case the algorithm randomly chooses one of them and gives a warning that no
unique order can be determined. In this example we assume that D will be
selected and added to the queue15. For the next step two candidate nodes
remain. M cannot be selected, since one of its parents is still unvisited (i.e. X).
In contrast, X has only one visited parent. Therefore, X will be added as the next
item in the queue. In the last step, both parents of M have been visited, so M can
also be selected and added to the queue.

Since there are now no more nodes to visit, the algorithm terminates. The
traversal will also terminate if none of the remaining –unvisited– nodes is suit-
able for selection. In this case the graph has at least one cycle, which is caused
by circular references among the constraints applied. The traversal algorithm
detects this situation and can subsequently show all the cycles by listing the
actions involved for each cycle.

5.4.3 Algorithm for Managing Execution
Once the execution order has been determined, the actions should be
performed, but only if all relevant control constraints are taken into considera-
tion. In order to show how this run-time process takes place we will use the
Employee example: the ordering algorithm has returned the following order:
CheckRaise, DBPersistence, XMLPersistence, MonitorSalary. Further, we assume
that all the actions are assigned to the join point; that is, there is not any absent
action. We recommend to see Figure 5.5 to follow the description of the execu-
tion. 

By default, an action is executable if it is present at the join point. At the imple-
mentation level, the executable state indicates both whether an action can be
executed and whether the constraints of the action can be enforced. The

15.Note that we would need an extra pre(D,X) constrain to provide a correct, non-deterministic
specification for our scenario.
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enforcement of a constraint or the execution of the action may change this state
to non-executable or executed. 

In the example of Figure 5.5, the execution starts with CheckRaise. There is no
action that CheckRaise depends on, so it can be performed after checking if it
is executable. We assume that CheckRaise executes successfully and returns
true. DBPersistence is the next action in the queue and it depends on CheckRaise
via a cond constraint. Before enforcing a constraint, first a check is performed
to determine if the current action is executable. Since DBPersistence is execut-
able, the cond constraint can be checked. This means that the return value of
CheckRaise is evaluated and DBPersistence remains executable, since the value
is true. We assume that DBPersistence executes successfully and returns true.
XMLPersistence is the current action after the execution of DBPersistence.
XMLPersistence has two constraints: a skip constraint with DBPersistence and
cond with CheckRaise. The algorithm selects the constraint with higher prece-
dence to evaluate first. In the example, first the skip constraint is selected
because the skip constraint has a higher precedence than cond. The evaluation
of the expression with DBPersistence results in true value. This implies that the
execution of XMLPersistence will be skipped; it will be marked as executed with
void return value. Another consequence is that the cond constraint will not be
checked, since XMLPeristence is not executable anymore. Finally, MonitorSalary
is the last item in the queue. Having no control constraint, this action will
simply be executed.

In another scenario, assume that XMLPersistence is the current action to be
executed again. Further, assume that CheckRaise failed and as a result of this,
DBPersistence has not been executed. When the skip constraint is checked first,
XMLPersistence still remains executable. However, when the cond constraint is
checked, XMLPersistence will no longer be executable because CheckRaise
failed.

This scenario shows the importance of the precise specification of constraints.
Without the latter cond constraint, XMLPersistence would be executed in this
scenario, which is not the expected behavior of the composition. 
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5.5 Algorithms
This section presents the pseudo-code of the algorithms that realize the
enforcement of behavioral and structural constraints that we introduced in the
previous sections. To describe these algorithms, we extended the notation of
[4] in the following manner: 

• We used object-oriented message calls on certain variables (e.g.
c.enforce()). We applied this notation in the pseudo code where the exe-
cution of a method has no relevance to the description of the algo-
rithms. 

• We introduced the use of comments in pseudo-code.

5.5.1 Algorithm for Order Generation
Table 5.12 presents the input variables and declarations in the algorithms
related to ordering:

The pseudo-code of the algorithm that generates an order of actions is
presented in Listing 5.13. As we wrote in section 5.4.2, this algorithm performs
a topological sort of a directed graph that represents the ordering specification

Table 5.12 Input variables and declarations in the 
algorithms related to ordering

Variables, functions Description

Nodes set of the available nodes in the graph

root the root node

Order a list of nodes that contains the actions to be exe-
cuted in their order

ENQUEUE(List, anElement) function that adds an element to a FIFO list

DEQUEUE(List) :: anElement function that removes and returns an element from a 
FIFO list

PARENT-NODES(node):: List function that returns all parent nodes1 of node

1. A node p is a parent to node n if there is an edge ’pre’ pointing from n to 
p.
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of actions. The execution of the algorithm was demonstrated through an exam-
ple case in section 5.4.2.

 

Listing 5.13 Order generating algorithm

0) GENERATE-ORDER(Nodes, root)
1)     current ← root
2)     while (true)
3)         do if current ≠ NIL
4)                   then 
5)                       ENQUEUE(Order, current)
6)                       Nodes ← Nodes \ {current}
7)                   else 
8)                      if  Nodes ≠ ∅
9)                            then 
10)                                return Order
11)                            else 
12)                                print "Circular reference detected in the ordering specification"
13)                                return NIL
14)              current ← SELECT-OPEN-NODE(Nodes, Order)
15)
16) SELECT-OPEN-NODE(Nodes, Order)
17)    Candidates ← {}
18)    for each current ∈ Nodes
19)        do if PARENT-NODES(current) \ Order = ∅
20)                   then
21)                       ENQUEUE(Candidates, current)
22)    
23)    if Candidates = ∅
24)        then
25)            return NIL
26)        else
27)            /* The ordering is non-deterministic if |candidates| is greater than 1 */
28)            return DEQUEUE(Candidates) 
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5.5.2 Interpreter Algorithm for Behavioral Constraints
Table 5.14 presents the input variables and declarations in the algorithms
related to the enforcement of behavioral constraints:

Listing 5.15 presents the pseudo code of the algorithm that enforces the behav-
ioral constraints pertaining to the actions of a shared join point. The execution
of the algorithm was demonstrated through an example case in section 5.4.3.
This algorithm is an interpreter that has the following generic steps to execute
an action: first, the constraints of the action are ordered based on their prece-
dence. Second, conflict detection rules, such as the multiple-skip rule, are
performed to detect possible runtime conflicts among the constraints. After
these two steps, the constraints are enforced one by one similarly to a shirt
circuit (minimal) evaulation. Finally, the constrained action will be executed,
if it is still executable after the enforcement of all constraints.

Table 5.14 Input variables and declarations in the 
algorithms related to the execution of actions

Variables, functions Description

OrderedNodes list of nodes that contains the actions to be executed 
in their order

ConstraintTypes list of constraint types in their precedence order

ENQUEUE(List, anElement) function that adds an element to a FIFO list

DEQUEUE(List) :: anElement function that removes and returns an element from a 
FIFO list

HEAD(List) :: anElement returns an element from a FIFO list

0) EXECUTE-ACTIONS(OrderedNodes)
1)     /* the first node is always the root node and it does not contain any action */
2)     current ← DEQUEUE(OrderedNodes) 
3)     while (OrderedNodes ≠ ∅ )
4)           do current ← HEAD(OrderedNodes)
5)                 currentAction ←  current.getElement()
6)                 Constraints  ←  currentAction.getConstraints()
7)
8)                 /* STEP 1: ordering the enforcement of constraints based 
9)                    * on their precedence*/
10)                 Constraints ← ORDER-CONSTRAINTS(Constraints)
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Listing 5.15 Algorithm for managing the execution of actions

5.5.3 Detecting Conflicts Among Structural Constraints
As we discussed in section 5.5.3, there are two types of conflicts that may occur
in the specification of structural constraints. To detect these conflicts, we use a
simple technique that uses a directed graph representation of structural
constraints and an algorithm that searches for a path between two nodes of the
graph.

11)                 /* STEP 2: detecting possible runtime conflicts, e.g. skip-skip */
12)                 DETECT-CONFLICTS(current, Constraints, OrderedNodes)
13)
14)                 /* STEP 3: enforcement of each constraint one by one */
15)                 for each c ∈ Constraints 
16)                       do if currentAction.isExecutable()
17)                                  then
18)                                      c.enforce()
19)                                  else
20)                break
21)                
22)                 /* STEP 4: execution of the action if it is still executable */ 
23)                if currentAction.isExecutable()
24)                     then
25)                         currentAction.execute()
26)
27)                DEQUEUE(OrderedNodes) 
28)
29) ORDER-CONSTRAINTS(Constraints)
30)    /* ContraintTypes is a list of contraint types in their precedence order */
31)    for each ct ∈ ContraintTypes
32)        do for each c ∈ Contraints
33)              if c.type() = ct 
34)                  then 
35)                     ENQUEUE(OrderedConstraints, c)
36)            
37)  DETECT-CONFLICTS(current, Constraints, Nodes)
38)      /* Iterate over each type of constraints and detect possible conflicts
39)        * based on the current node, constraints and the actual set of nodes */
40)      for each ct ∈ ConstraintTypes
41)          do ct.detectConflict(current, Constraints, Nodes)
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In the graph representation of structural constraints, a constraint include(x,y) is
represented by a directed edge between the nodes x and y. Figure 5.7 illustrates
a simple example graph that is built up from the following constraints:
include(a,b), include(b,c), include(b,d). 

In this graph representation, a structural conflict is detected for a constraint
exclude(x,y) if there is a path of include edges either from the node x to y (cf.
straight conflict), or from the node y to x (cf. reverse conflict). 

Figure 5.7 An example graph representation of the structural constrains 
include(a,b), include(b,c), include(b,d) and exclude(a,d)

For instance, a straight conflict will be detected for the constraint exclude(a,d),
since there is a path between the nodes a and d in the example graph.

Listing 5.17 presents the pseudo code of the algorithm that performs the
conflict detection in the specification of structural constraints. Table 5.16
presents the input variables and declarations of this algorithm.

Table 5.16 Input variables and declarations in the 
algorithms related to the conflict detection among structural constraints

Variables, functions Description

Graph a set of nodes and edges that represents the specifica-
tion of structural constraints

ENQUEUE(List, anElement) function that adds an element to a FIFO list

DEQUEUE(List) :: anElement function that removes and return an element from a 
FIFO list

A B

C

D

include

inclu
de

include
exclude
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0) DETECT-STRUCTURAL-CONFLICTS(Graph)
1)    for each edge ∈ Graph.getEdges()
2)        do if edge.getLable = "exclude"
3)                  then
4)                      left ← edge.getLeftNode()
5)                      right ← edge.getRightNode()
6)
7)                     /* detecting straight conflict */
8)                      if FIND-INCLUDEPATH(left, right) = true
9)                          then
10)                                print "structural conflict for exclude(" +left+ "," +right+ ")"
11)
12)                     /* detecting reverse conflict */
13)                      if FIND-INCLUDEPATH(right, left) = true
14)                          then
15)                                print "structural conflict for exclude(" +right+ "," +left+ ")"
16)
17) FIND-INCLUDEPATH(source, target)
18)    OpenNodes ← {} ; Path ← {}
19)    current ← source
20)    while ((current ≠ NIL) AND (current ≠ target))
21)        do ENQUEUE(Path, current)
22)             current ← SELECT-OPEN-NODE(current, target, OpenNodes, Path)
23)    return (current ≠ NIL)
24)
25) SELECT-OPEN-NODE(current, target, OpenNodes, Path)
26)    /* Expand the set of open nodes with the children of the current node*/ 
27)    for each child ∈ CHILDREN-INCLUDE-NODES(current)
28)        do if ((child ∉ OpenNodes) AND (child ∉ Path))
29)                  then 
30)                      ENQUEUE(OpenNodes, child)   
31)
32)
33)   /* if the target node is in the set of open nodes 
34)     * it is returned immediately to optimize the execution time */
35)     if target ∈ OpenNodes
36)           then
37)               return target
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5.6 Integration with AOP Languages 
In this section, we will show the application of the concepts of the constraint
model to concrete AOP languages. As we pointed out before, the constraint
model is intended to be a succinct representation of the core concepts for
controlling the interaction among aspects. Hence, it does not address program-
ming language issues such as comprehensibility. It is rather intended as a
model that can be adopted by AOP languages. 

This section is structured as follows: first, we extend the join point concept, as
it is available in most AOP languages. Then, we use the extended join point
construct to integrate the constraint model with AspectJ and Compose*. We
revisit the example that we introduced in the problem analysis section and
show how the extended version of AspectJ and Compose* can resolve the iden-
tified problems. 

5.6.1 Extending Join Points with Properties
Most AOP languages provide reflective information about the current join
point by representing the join point as a first-class entity. The ‘instance’ of the
join point can be accessed within the body of the advice that is being executed
when the join point is reached. For example, in AspectJ, the type JoinPoint
represents the concept of join point. The variable thisJoinPoint is an instance of
that type and it can be used only within the context of advices. The type
Joinpoint in AspectWerkz [1], Invocation in JBoss [5], and ReifiedMessage in
Compose* [2] serve the same purpose. 

To implement the conditional execution of aspects (i.e. cond constraint) and
other concepts of the constraint model presented in section 5.3, we have
extended the interface of type join point with new operations. These operations
allow for placing and retrieving extra information into and from an instance of

38)    /* if there are no open nodes left... */
39)    if OpenNodes = ∅
40)         then 
41)             return NIL
42)         else
43)             return DEQUEUE(OpenNodes)

Listing 5.17 Algorithm for detecting structural conflict
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the join point – this extra information may originally not pertain to the join
point itself. In this way, the join point will act as a communication channel
among the aspect instances that are sharing the same join point. Thus, aspect
instances being executed on the same join point can exchange information
among each other through the extended join point interface. In addition, the
extra information placed in the join point can also be recognized and main-
tained by a weaver to direct the weaving process.

Extra Information: Properties
The extra information is represented in the form of properties. A property is a
key-value pair that belongs to the join point during the execution of advices.
The key is the fully qualified name of the property: a fully qualified represen-
tation where the property was created (the namespace and the name of an
aspect and its advice), plus the identifier of the property itself. For example, the
value is a fully qualified reference to a constant defined in Java. The structure
of properties is defined as follows:

Definition
Property := <Key; Value>
Key := <Namespace.Aspect.Advice.Identifier>
Value := Fully Qualified Constant References in Java

Example
<Persistence.update.isSucceeded; Boolean.True>

Manipulation of Properties
In general, properties can be manipulated by two parties: the weaver and
programmers. Before or after the execution of an advice the weaver can create,
access, change or release a property related to the join point. We refer to the
properties recognized by the weaver as built-in (application independent)
properties. Programmers can also use built-in properties to direct the weaver.
Built-in properties are independent of particular applications; typically, they
are used by the weaver for maintaining standard interactions among aspects.
We consider the conditional execution of aspects as an example of such an
interaction. Programmers can also create their own properties and manipulate
them within advices. We refer to the properties created by programmers as
user-defined properties. User-defined properties are typically application
specific properties. In this case, a user-defined property realizes a common
parameter passing mechanism among aspects to exchange information. 
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5.6.2 Integration with AspectJ
Before we adapt the constraint model to AspectJ, we need to carry out two
simple extensions to the language:

Named Advices
As we mentioned above, every property has a fully qualified name for two
reasons: to be able to trace back to the origin (i.e. advice) of the property and
to provide a unique name for the property. For this reason, the advice-construct
of AspectJ needs to be extended with an identifier16. 

Extending the Join Point Interface
To be able to handle properties, the org.aspectj.lang.JoinPoint interface needs to
be extended with the following methods:

void createProperty(String propertyId, Object value) throws PropertyExists – creates
a property with the given value. If the property already exists, the method
throws an exception.

Object getProperty(String propertyName) throws AmbiguousPropertyIdentifier –
returns the value of the given property. The propertyName is either the fully
qualified name, or only the identifier of the property. If the property with the
given identifier or fully qualified name does not exist, the method returns a null
value. When only the identifier is used as propertyName and there are more
properties with the given identifier, the method looks up and returns the one
that is in the default namespace. (That is, it looks up the property that is created
in the current aspect & advice). If there is not such a property, the method
throws an AmbiguousPropertyIdentifier exception.

void setProperty(String propertyName, Object value) throws
AmbiguousPropertyIdentifier – sets the value of the given property. The look up
strategy is the same as described at the method getProperty. If the given value is
null the property is removed. 

16.A number of AOP languages (e.g. AspectWerkz, JBoss, Compose*) already support the
identifier of the construct that represents the superimposed behavior. (Typically, this con-
struct is called advice in AOP). However, this does not apply to AspectJ, where advices are
unnamed. To keep the backward compatibility of weaver, the name of the advice is an op-
tional syntax element. However, properties can be created only within named advices.
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Listing 5.18 illustrates the use of these extensions by a simple example. Within
a named advice (checkRaise) a property (isSucceeded) is stored with a given
value. The weaver will read this value whenever the advice checkRaise is used
as a condition. 

Adopting the Constraint Model in AspectJ
Before discussing how AspectJ can adopt the constraint model, we have to
mention that AspectJ has already introduced the declare precedence construct
to order the execution of advices at shared join points. For this reason, we do
not provide a mapping from AspectJ to the ordering constraints in our
approach.17 Consider the following significant characteristics of the constraint
model:

Granularity of actions: Advices are mapped to the actions of the constraint
model. A built-in property called isSucceeded is introduced to indicate the
success or failure of an advice. This built-in property can be set by the above
described operations, as shown in Listing 5.18. To enforce conditional
constraints, such as cond, the weaver uses the property isSucceeded of each
advice that is used in a condition of a control constraint. It is not mandatory for
programmers to set isSucceeded in each advice. If isSucceeded is not set for an
advice but the advice is used in a condition, the weaver takes the void case
(neither success nor failure)18 by default.

Specification of constraints: A new construct is introduced in AspectJ to define
specifications of control constraints. This construct has the following syntax:

1) public aspect EnforceBusinessRules{
2)    after checkRaise(Employee p, int l): 
3)       MonitorSalary.salaryChange(p,l){
4)         …
5)         thisJoinPoint.createProperty(‘isSucceeded’, 
6)           Boolean.True); 
7)         …
8)    }}

Listing 5.18 Placing a property into a join point in AspectJ

17.Even though AspectJ has class-level precedence rules.
18.It is important to note we write the Boolean property into the join point and do not modify

the original return value of an advice.
187



CHAPTER 5 COMPOSING ASPECTS AT SHARED JOIN POINTS
declare constraint [on pointcut]: list of constraint statements. A set of constraint
statements is introduced, which aim at providing the desired control constraints
for a join point designated by pointcut. If the clause on pointcut is not used the
contraint specification is global to every join point. We list the constraint state-
ments along with their mapping to the constraint model: 
   Control constraints
        (x and y represent advices)

x if y; ⇔ cond(y, x);
skip x with const if y; ⇔ skip(y, x, const);

   Structural constraints 
         (x and y may represent both advices and sets of advices, see details below)

x includes y; ⇔ include(x, y);
x excludes y; ⇔ exclude(x, y);
x m_includes y; ⇔ include(x, y); include(y, x); 

Designation of actions: In general, the arguments of the constraint statements
(x and y) designate advices, which can be specified according to the template
namespace.Aspect.advice. For structural constraints, the arguments can desig-
nate a set of possible advices, which means that the constraint statement is
repeated over the elements in the Cartesian product of the argument(s). For
example, the arguments of an include constraint statement can be resolved as
follows: 

{a1, a2} includes {a3, a4} ⇔ include(a1, a3); include(a1, a4); 
                                           include(a2, a3); include(a2, a4);

This is equivalent to four include constraints with each of the possible combi-
nations of advices a1 to a4. In effect, this illustrates that the constraint state-
ments can express crosscutting constraints.

Modularization of specifications: In AspectJ19, the constraint specification,
similarly to other declare constructs, is modularized by aspects. Note that it is
not necessary to place a constraint specification in an aspect that is referred by

19.This is a proposal for an extension to AspectJ.
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the specification itself; any aspect can contain arbitrary constraint specifica-
tions. 

Listing 5.19 shows an example of a constraint specification. It specifies that the
advice update of the aspect DBPersistence executes only if the advice
checkRaise of the aspect EnforceBusinessRules has succeeded. 

Example Revisited
In Listing 5.20, we revisit the second step of our scenario (section 5.2.2). In this
listing, we show how the extended version of AspectJ can realize the composi-
tion of DBPersistence and CheckRaise, without introducing the problems we
have identified in its original AspectJ version. In the aspect CheckRaise we
have made three modifications: (line 2) the code that was responsible for reset-
ting the Boolean variable has been removed; (line 4) the advice that is respon-
sible for checking the salary has been named as checkRaise; (line 14-16) instead
of the Boolean variable that was used for the workaround of conditional execu-
tion, the property ísSucceeded has been introduced to indicate the success or
failure of checkRaise. The realization of DBPersistence (regarding the update
functionality) has been modified in two places: (line 26) the advice that was
responsible for updating the database has been named update; (line 27) the code
that was responsible for the conditional execution has been removed. Natu-
rally, it is necessary to express the conditional execution between
DBPersistence and CheckRaise. This is done in the constraint specification at
(line 36). As we wrote before, control constraints do not specify the execution
order of advices; this also has to be provided to achieve the correct composition
of aspects.

1) public aspect ApplicationConstraints{
2)  declare constraint on 
3)   call(void Employee.increaseSalary(..)): 
4)    DBPersistence.update if EnforceBusinessRules.checkRaise;
5) }

Listing 5.19 An example constraint specification in (extended) AspectJ
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1) public aspect CheckRaise pertarget(target(Employee) ){
2)   /* removed maintenance code */
3)
4)   after checkRaise(Employee person, int l):
5)     MonitorSalary.salaryChange(person,l){
6)   Manager m=person.getManager();
7)   if ((m!=null)&&(m.getSalary() <= person.getSalary()) ){
8)      …
9)      //Undo
10)      person.decreaseSalary(l);
11)    //setting Boolean for conditional execution
12)      /* _isValid = false; */
13)      thisJoinPoint.createProperty(“isSucceeded”,
14)         BooleanConstants.False);
15)     } else {
16)        thisJoinPoint.createProperty(“isSucceeded”, 
17)           BooleanConstants.True);
18)     }
19)   }
20) }
21)
22) public aspect DBPersistence 
23)   pertarget (target(PersistentObject)){
24)  …
25)    after update(PersistentObject po): stateChange(po){  
26) /* if (CheckRaise.aspectOf((Object)po).isValid()){ */
27) System.out.println("Updating DB...");
28) po.update(po.getConnection());
29) /* } */
30) }}
31)
32) public aspect EmployeeConstraints{
33)     declare precedence:
34)        EnforceBusinessRules, DBPersistence;
35)     declare constraint on 
36)        call(void Employee.increaseSalary(..)): 
37)          DBPersistence.update if 
38)            EnforceBusinessRules.checkRaise;
39) }

Listing 5.20  Realization of the second requirement in our scenario using the 
extended version of AspectJ
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Note that we have removed all code that was related to the workaround of
conditional execution. The remaining code now represents clearly the intended
responsibilities of aspects, since the conditional execution is realized by the
weaver and it is not tangled with the affected aspects. The interaction between
the aspects is expressed in the form of a declarative specification, which is
much closer to the design, as opposed to the tangled realization. Besides, the
two aspects have become independent from each other, since they do not
contain references to each other anymore. As a result, there is a low coupling
between these aspects; they can be developed and maintained independently.

5.6.3 Integration with Compose*
The constraint model is generic in the sense that it can be adopted by different
AOP languages. For example, we have also provided an integration of the
constraint model with Compose* in a way that is similar to AspectJ: The join
point type of Compose* (the ReifiedMessage class) has been extended to handle
properties, and we introduced a pre-defined property (named isSucceeded) to
map filtermodules to actions. The mapping has been realized using similar
steps as we have discussed for AspectJ. 

Named Filtermodules
In Compose*, filtermodules represent the language unit of the superimposed
behavior. Since filtermodules are already named, we do not have to deal with
this issue.

Join Point Interface
To be able to handle properties, we also need to extend the join point type of
Compose*, similarly, as we did for AspectJ. In Compose*, the
composestar.runtime.FLIRT.message.ReifiedMessage type is responsible for
representing the join point. We need to implement the same methods that we
implemented for AspectJ: createProperty, getProperty and setProperty. These
methods can be used within advice types (ACT), as it is illustrated by an exam-
ple in Listing 5.21. The CheckRaise filtermodule (line 2) represents the super-
imposed behaviour. In fact, this filtermodule realizes the salary-checking
feature of the step 3 of the scenario in section 5.2.2. However, the check of
salary is realized in a bit different way than it was done in AspectJ, in the orig-
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inal scenario. Instead of checking the salary after the execution of
increaseSalary, we do the check before the execution in an ACT of Compose*.
1) concern EnforceBusinessRules{
2)   filtermodule CheckRaise{
3)     internals
4)       CheckRaiseACT cact; 
5)     inputfilters
6)       m: Meta = { [increaseSalary] cact.check }
7)   }
8)
9)   superimposition{
10)     selectors
11)         businessClasses = { C | isClassWithName(C,’Employee’) 
}
12)     filtermodules
13)       businessClasess <- CheckRaise;
14)     }
15)  }
16)
17)  public class CheckRaiseACT{
18)     public boolean isValidSalary(int level){…}
19)
20)     void check(ReifiedMessage msg){
21)        int salaryLvl = msg.getArgument(0);
22)  
23)        if (!isValidSalary(salaryLvl)){
24)           /* indicating the failure of the aspect 
25)            * & skipping the original method*/
26)           msg.createProperty(“isSucceeded”, 
27)              Boolean.False);
28)           msg.reply();
29)        } else {
30)           /* indicating the success of the aspect */
31)           msg.createProperty(“isSucceeded”, 
32)              Boolean.True);
33)           msg.resume();
34)        }
35)      }
36)    }
37) } 

Listing 5.21 Example revisited in Compose*
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This different implementation strategy is due to the fact that currently there is
no construct in Compose* that clearly corresponds to the after-advice of
Aspect. However, the ACT construct of Compose* has a similar semantics as
the around advice of AspectJ. By using ACT (cf. “around advice”), our exam-
ple is still suitable to illustrate the use of properties and conditional execution
of filtermodules. The CheckRaise filtermodule is superimposed on the
Employee class in the superimposition specification (line 9-15). In the superim-
position specification, the selector businessClasses is defined to designate the
Employee class and then, in the filtermodules part, CheckRaise is bound to this
selector. Filters, placed in the CheckRaise filtermodule after the keyword
inputfilters in line 5, process the intercepted messages to the instances of the
classes on which the filtermodule is superimposed (i.e. the class Employee in
this case). Here, only one filter is defined: a Meta filter that will match on every
message named increaseSalary. The meta filter reifies the message matched and
passes it as a parameter in a call to the check method on an instance of
CheckRaiseACT (lines 20-36). In the check method, large part of the code is the
realization of the business logic, except lines 25-26 and 31-32. In these lines,
by using the createProperty method, we place a property (named isSucceeded)
into the reified message representing the actual join point. In this case, the fully
qualified name of the property will be EnforceBusinessRules.
CheckRaise.isSucceeded. This property is read by the weaver whenever the
filtermodule CheckRaise is used as a condition. 

The Approach
We discuss the most important characterizations of our approach:

Granularity of actions: Filtermodules are mapped to the actions of the
constraint model, because they modularize the behaviour superimposed upon
the join points. Similarly to what we did for AspectJ, a built-in property called
isSucceeded is introduced to indicate the success or failure of a filtermodule.
This built-in property can be set within an advice type (ACT) by the above
described operations as it is already shown in Listing 5.21. In addition, it is not
necessary to use the meta-filter & ACTs for the manipulation of properties.
Properties can also be manipulated directly from a dedicated filtertype, the
Property filter. To enforce conditional constraints, such as cond, the weaver uses
the isSucceeded property for each filtermodule that is used in a condition of a
control constraint. It is not mandatory for programmers to set isSucceeded in
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each filtermodule. If isSucceeded is not set for a filtermodule but the filtermod-
ule is used in a condition, the weaver takes the void case (neither success nor
failure)20 by default.

Specification of constraints: The keyword constraints is introduced in the super-
imposition specification to describe constraint specifications. This keyword is
followed by one or more constraint statements that are bound to a selector in
the following manner: selector <- constraint statement. The selector designates a
set of structural join points as a local scope of the constraint statements. This
allows for specifying different constraints between the same filtermodules that
are superimposed on different join points. Compose* defines a set of constraint
statements, which aim at offering the power of the composition constraints
with an obvious intuitive meaning. We list the statements along with their
mapping to the constraint model: 
   Ordering constraints
   (x and y may represent both filtermodules and sets of filtermodules, see 
    details below, at the subsection Designation of actions):

x before y; ⇔ pre(x, y); 

   Control constraints 
   (x and y represent filtermodules):

x if y; ⇔ cond(y, x);
x skipif y with const; ⇔ skip(y, x, const);
x ordIf y; ⇔ pre(y, x); cond(y, x);
x ordSkipif y with const; ⇔ pre(y, x); skip(y, x, const);

   Structural constraints 
   (x and y may represent both filtermodules and sets of filtermodules, see 
    details below, at the subsection Designation of actions):

x includes y; ⇔ include(x, y);
x excludes y; ⇔ exclude(x, y);
x m_includes y; ⇔ include(x, y); include(y, x); 

Control constraints do not deal with ordering; although, the filtermodules used
by control constraints typically need to be ordered as well. For this reason, we
have defined two new control constraint mappings: ordIf and ordSkip. These

20.Note that we do not talk about the return value of an advice here. The original return value
of an around advice is not affected; we place the property into the join point instance.
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constraint statements are for the sake of convenient use. By applying these
constraints, for each filtermodule that appears in the condition, an ordering
constraint is automatically created between the constrained filtermodule and
the filtermodules that are used as conditions. 

Designation of actions: In general, the arguments of the constraint statements
(x and y) designate filtermodules, which can be specified according to the
Compose* notation: namespace.Concern.filtermodule. For structural and order-
ing constraints, the arguments can also designate a set of possible filtermod-
ules, which means that the constraint statement is repeated over the elements
in the Cartesian product of the argument(s). For example, assume that the argu-
ments of an include constraint statement can be resolved as follows: 

{a1, a2} includes {a3, a4} ⇔ include(a1, a3); include(a1, a4); 
                                           include(a2, a3); include(a2, a4);

As we showed in the mapping to AspectJ, this is equivalent to four include
constraints with each of the possible combinations of advices a1 to a4.

Modularization of specifications: In Compose*, the constraint specification is
modularized by concerns. Note that it is not necessary to place a constraint
specification in a concern that the specification itself refers to; any arbitrary
concern can contain arbitrary constraint specifications. Listing 5.22 shows an
example constraint specification: an ordIf relationship is defined between the
filtermodules Update of DBPersistence and CheckRaise of EnforceBusinessRules.

This means that both the cond and pre constraints are applied between these
filtermodules when they are superimposed on class Employee (designated by
the selector EnforceBusinessRules.businessClasses).
1) /* a separate concern definition for 
2)  * application-specific constraints */
3) concern ApplicationConstraints{
4)    superimposition{
5)       constraints
6)          EnforceBusinessRules.businessClasses <-
7)            DBPersistence.Update ordIf 
8)               EnforceBusinessRules.CheckRaise; 
9) }}

Listing 5.22 An example constraint specification in Compose*
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In Listing 5.23, we revisit the third step of our scenario (section 5.2): we show,
focusing on the use of composition constraints, how Compose* can realize the
update functionality of DBPersistence and the salary checking functionality,
implemented by the CheckRaise aspect in Listing 5.21. In our solution, the
salary checking functionality is realized by the CheckRaise filtermodule of
EnforceBusinessRules, and the CheckRaiseACT advice type. The implementation
of these units has already been presented in detail in Listing 5.21. In Listing
5.23, the update functionality of DBPersistence aspect is implemented in a simi-
lar way (line 2): the Update filtermodule uses a meta filter to intercept the
increaseSalary message, then it reifies the message and passes it as a parameter
to the method update of DBPersistenceACT (line 18). Both the CheckRaise and
Update filtermodules are superimposed on Employee; hence, they will do filter-
ing on the same join point, when an instance of Employee receives the
increaseSalary message. The conditional execution is defined in an independent
concern named ApplicationConstraints (in Listing 5.22): the ordIf relationship
defines two constraints between the Update and CheckRaise filtermodules: (a)
the superimposition order of the Update and CheckRaise filtermodules is such
that the CheckRaise filtermodule will process first the intercepted message and
then, the Update filtermodule; (b) the Update filtermodule can be executed only
if CheckRaise succeeded. This means that filtermodule Update will be executed
only if  isSucceeded has been set to true in CheckRaise.

Note that we achieved the same characteristics of code that we got in the revis-
ited AspectJ examples: DBPersistence and EnforceBusinessRules can be formu-
lated and maintained independently from each other; besides, the interaction
(i.e. conditional execution) between them is formulated in an independent
module, in the form of declarative specification. 

5.7 Implementation
Figure C.1 in Appendix C presents the architecture of Compose*, the realiza-
tion of Composition Filters on .NET platform. The constraint model and
proposed language mechanisms were implemented within the Filter Composi-
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tion and Checking (FILTH) module. The grammar of the proposed constraint
language can be found in section A.11 in Appendix A.

5.8 Related Work
Composition of aspects at shared join points is a common problem, which has
been –partially– addressed by several AOP languages. In the following, we

1) concern DBPersistence{ 
2)   filtermodule Update{
3)      internals
4)         DBPersistenceACT db_act; 
5)      inputfilters
6)         m: Meta = { [increaseSalary] db_act.update }
7)   }
8)
9)   superimposition{
10)     selectors
11)        businessClasses = { C | 
12)           isClassWithName(C,’Employee’)};
13)     filtermodules
14)        businessClasess <- Update;
15)    }
16) }
17)
18) public class DBPersistenceACT{
19)   void update(ReifiedMessage msg){
20)     /* let’s fire the message */
21)     msg.proceed();
22)      PersistentObject po =(PersistentObject)msg.getTarget();
23)        
24)     /* code copied from the after advice */
25)     System.out.println("Updating DBMS...");
26)     po.update();
27)     …
28)   }
29) }
30)
31)

Listing 5.23 An overview of the implementation of the running example with 
Compose*
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examine some of them with respect to the requirements that we identified in
section 5.2.

In AspectJ [8], the order between advices can be controlled by the declare
precedence statement. The precedence determines the execution order of
advices superimposed on the same join point, depending on the type of the
advice. The precedence declaration can be placed either in the aspect that
defines the advice, or in other independent aspects; this allows most of the
modularizations discussed in section 5.2.3. Circular relationships among
aspects are detected only if they are superimposed on the same join point. The
precedence is defined at the level of aspects, which implies that different pairs
of advice of the same two aspects cannot have different precedence. As in most
other AOP languages, in AspectJ, conditional executions are not supported.
However, to the best of our knowledge, among the current AOP languages,
AspectJ is the one that supports the identified software engineering require-
ments to the largest extent.

Constantinides et. al. [3], emphasizes the importance of the ‘activation order’
of aspects that have been superimposed on the same join point. In their frame-
work, called Aspect Moderator Framework, they propose a dedicated class,
called moderator, to manage the execution of aspects at shared join points. The
moderator class, as defined in [3], can express conditional execution of aspects,
but it cannot specify partial ordering relationships between aspects. The imple-
mentation of the moderator class allows the activation of an aspect only if all
the preceding aspects are pre-activated successfully. In our work, a conditional
execution is defined between individual advice actions. In this way, the execu-
tion of an aspect does not depend on the order of other aspects. Note that since
the application programmer can implement new moderator classes, it is possi-
ble to introduce other activation strategies; however, for certain cases, to define
these strategies might not be straightforward in an imperative way as defined
in Java. With the composition constraints we propose, the execution strategies
are derived in a declarative way. Besides, extending the framework to support
partial ordering relationships would allow for a more sophisticated way of the
activation of aspects.

In JAC [11], wrappers are responsible for the manipulation of intercepted
methods. A wrapper is implemented by a class that extends the class Wrapper.
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The order of the wrappers that can be loaded into the system is handled in a
global configuration file. In this file the wrapper classes are listed in their wrap-
ping order. This means in JAC the wrapping order is global, whereas in our
approach the order can be made specific to individual join points. JAC does not
support the conditional execution between advices either. 

EAOP [6] defines several operators that are comparable to our constraints. The
Seq operator specifies an exact order of aspects. Unlike pre in our model, it
does not allow for partial ordering. The EAOP operators Cond and Fst, are
related to the Cond constraint of our model. However, in EAOP the composi-
tion operators are used to construct a composition of aspects, whereas in our
model we use the constraints to derive a possible composition of aspects. The
difference between the two approaches is that EAOP may require the re-
construction of the composition of aspect instances whenever a new aspect
instance has to be included. In our model, by adding one or more new
constraints, the composition of the new aspect is automatically derived.
Further, in EAOP the specification of composition is not open-ended (it
requires concrete aspect instances) and conflict analysis is not available, yet
planned to be integrated in the tool.

The connector abstraction of JAsCo [13] allows for specifying the execution
order of advices belonging to different hooks. In other words, the ordering
specification is expressed on the level advices. Besides the ordering specifica-
tions, JAsCo allows for defining custom combination strategies using regular
Java. Each concrete combination strategy implements the CombinationStrategy
interface. A JAsCo combination strategy works like a filter on the set of appli-
cable hooks at a certain point in the execution of the application. In JAsCo, it
is possible to add/remove connector combination strategies dynamically. There
are two important differences between the approaches of JAsCo and our
constraint model: (1) combination strategies describe the composition of hooks
in an imperative manner, in terms of Java code; (2) as opposed to our constraint
model, the order of the application of combination strategies does matter in
JAsCo. This means that the introduction of new hooks and combination strat-
egies may require more effort to change the composition specification than
using constraints. In addition, the imperative approach may render difficulties
in checking the consistency of the composition specification, as compared to
our approach.
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5.9 Trade-off Analysis of Software Quality Factors

5.9.1 Comprehensibility
Using composition constraints, the dependencies between aspects are
expressed explicitly; thus, the composition of aspects can be understood easily.
Without constraints, these dependencies must be hard-wired into the body of
aspects (and/or advices), which renders more difficulties in the understanding
of the program.

It is also important to consider the modularization of composition constraints.
If the specification of constraints is distributed over several modules (i.e. it is
too fragmented), the comprehensibility of the program can decrease. On the
other hand, if all constraints are centralized without sufficient organizational
structure, this may scale up badly in terms of comprehensibility. 

Briefly, composition constraints may have both positive and negative impacts
on the comprehensibility of the composition of aspects, depending on their
usage. For this reason, a language should support alternative modularizations
(see section 5.2.3) of constraints. For example the AspectJ declare precedence
construct allows this. Our model can be mapped to languages that support this.

5.9.2 Evolvability
A constraint specification - using the soft converter functions - may refer to
aspects which are not necessarily present in the system. Whenever those
aspects are defined by the developer and become present, the constraint speci-
fication will automatically apply to them. Thus, aspects can refer to other
aspects which will be integrated with the system later. Furthermore, aspects
can be removed from the system without modifying the constraint specifica-
tion. For this reason, we call these specifications open-ended. This is an impor-
tant property of our model, since aspects can be developed and deployed inde-
pendently from each other. 

5.9.3 Predictability
Without using ordering constraints, the execution order of advices is undeter-
mined. For this reason, the application of control contraints have, in general,
positive impact on predictability. However, the constraint skip may have nega-
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tive impacts on runtime predictability: the possible conflicts can be detected
among multiple skip constraints during compilation; however, the conflict itself
can be detected only in runtime as we discussed in section 5.3.3.

Control constraints may have a slight negative impact on predictability when
they are used with soft-converter functions. As we said in the previous section,
aspects can refer to other aspects that can be integrated with the system later.
Thus, a programmer can add a new aspect to the system without knowing what
specifications apply to that aspect. Compiler and IDE support might help in
preventing unintended compositions and avoiding conflicts.

On the other hand, using composition constraints, designers can ensure that
when certain aspects are added later to the system, they will be integrated in a
predefined way. This has a positive impact on the predictability of develop-
ment process.

We introduced the notion of structural constraints to describe valid composi-
tion of aspects at shared join points. Besides, we are capable of detecting
conflicts in the specification of both structural and control constraints. All of
these features increases the predictability of the program specification.

5.9.4 Adaptability
A constraint specification can be placed in any aspect module of a system. A
benefit of this approach is that control constraints statements in this manner can
express application specific composition of independently developed aspects.
This contributes in a positive manner to the adaptability the composition spec-
ification. 

5.9.5 Modularity
Without explicit means to express the conditional execution between aspects,
the programmer needs to use workarounds - in the form of variables and extra
advices - that are not part of the original aspect specification. In addition, as we
wrote in the previous section, aspects have explicit dependencies among each
other that render difficulties in their reuse. Another benefit of applying control
constraints and using the third modularization alternative of section 5.2.3 is
that aspects contain only their intended responsibilities; hence, they have no
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more direct references to each other. As a result, there is a low coupling
between these aspects; they can be developed and maintained independently.

It is important to note that the reuse of aspects, e.g. through inheritance, should
incorporate the reuse of constraints. This is a language design issue that is inde-
pendent from our proposed model.

5.10 Conclusion
Shared join points are not a new phenomena, nor specific to any AOP
language. To the best of our knowledge, SJP composition has not been explic-
itly analysed in-depth in the literature before. In particular, in the current
approaches, we have encountered mostly ordering constraints, but little or no
control constraints and structural constraints. In this chapter, we have first
performed an extensive analysis on the issues that arise when multiple aspects
are superimposed at a SJP. Based on this analysis, we identified a set of
requirements that drove our design (section 5.2). As a generic solution, inde-
pendent of any specific AOP language, we have proposed a constraint-based,
declarative approach to specify the composition of aspects (section 5.3). 

The proposed constraint specification can express the composition of aspects
from different libraries, provided by third parties. This is important for large-
scale systems, where a large number of aspects are involved in the develop-
ment process. Unlike the other approaches, the composition is expressed in
form of declarative specifications, rather than in some form of imperative code
within methods. This declarative specification allows  defining the composi-
tion of aspects already in the design phase. 

We have implemented and tested the algorithms that are necessary to check the
soundness of the constraint specification and detect possible runtime conflicts.
By the underlying constraint model and conflict detection techniques we aimed
at providing safe use for programmers. 

We have proposed a mechanism to extend the concept of join point with the
property construct. By this construct, aspects can exchange information among
each other and control the weaver at shared join points. We claim that this
extension is applicable to a wide range of aspect-oriented programming
languages that offer an explicit join point type. Finally, to give an intuitive use
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Chapter 6

Conclusions

This chapter presents the contributions and conclusions of the research
presented in this thesis, and suggests directions for future work.

Chapter 6 is structured as follows: section 6.1 emphasizes the contributions of
this thesis. In section 6.2, we provide a summary about the language constructs
that we introduced in this thesis. In this section, we also discuss how the intro-
duced constructs are related to the language concepts of the reference model
proposed in Chapter 2. Finally, section 6.3 indicates directions for future work.

6.1 Contributions
The contributions of the thesis are the following:

1. A reference model of aspect-oriented languages

Chapter 2 presents a reference model of aspect-oriented languages that
captures their common and distinctive concepts. This reference model provides
an overview of the state-of-the-art aspect-oriented languages and serves as a
comparison framework to show their characteristic features. Furthermore, it
exposes various design dimensions of aspect-oriented languages; i.e. those
issues that have to be considered when one develops an aspect-oriented
language.

2. An in-depth analysis of the role of design information within the context of
aspect-oriented programming, and the integration of design information with
aspect-oriented composition abstractions
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Chapter 3 presents an in-depth analysis of the role of design information within
the context of aspect-oriented programming. We motivate the need of referring
to program elements based on their design information. We also demonstrated
that the integration of design information with aspect-oriented composition
mechanisms ('semantic composition') offers a means of coupling that is both
manageable and powerful. The main benefits of the design information anno-
tations that we introduce in chapter 3 are: 

• The ability to select join points based on design information (which
cannot be derived from the program itself).

• The proposed mechanism allows for choosing the appropriate loca-
tions to define annotations: within the code, co-located with the code
or in an aspect.

• The use of design information makes aspects, especially pointcut
expressions, less vulnerable to changes of the program. The reason is
that they avoid dependencies of the pointcut expression upon the struc-
ture or the naming conventions of the program. 

• The dependencies between program elements can be more precise and
easier to understand by referring to the design intentions instead of
structural, or syntactic patterns.

3. Evolvable advice-pointcut binding, and aspect specifications, founded on
annotations and a generic, predicate-based query language 

Chapter 4 presents an extensive analysis of the pointcut-advice binding mech-
anisms of various aspect-oriented languages. Based on the identified key prop-
erties (e.g. loose coupling, many-to-many binding), we designed an advice-
pointcut binding concept that provides associate access to advices/aspects. In
the new specification we applied queries, founded on a generic, predicate-
based language, that allow for designating both the places - in terms of struc-
tural join points - where we want to weave, and the units (e.g. filter modules,
methods, etc.) that we want to weave. As a result, we provided a binding mech-
anism that is more expressive and evolvable compared to the analysed binding
mechanisms. By applying annotations (semantic properties), we improved the
evolvability and comprehensibility of the advice-pointcut bindings, and aspect
specification to a greater extent.
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4. A constraint-based, declarative approach to specify the composition of
aspects at shared join points

Chapter 5 presents an analysis on the issues that arise when multiple aspects
are superimposed at the same join point. Based on this analysis, we identified
a set of requirements towards expressing the composition of aspects. As a
generic solution, independent of any specific AOP language, we proposed a
constraint based, declarative approach to specify the composition of aspects at
shared join points. The proposed constraint specification can express the
composition of aspects from different libraries, provided by third parties. This
is important for large scale-systems, where many aspects are involved in the
development process. The composition is expressed in the form of declarative
specifications, rather than imperative code within methods. We implemented
and tested algorithms that are necessary to check the soundness of the
constraint specification and detect possible runtime conflicts. The underlying
constraint model and conflict detection techniques aim at providing a predict-
able specification for programmers.

5. Extending join points with the property construct to provide a mechanism by
which aspects can exchange information with each other, and control the
weaver at shared join points

In the second part of Chapter 5, we extended the concept of join point type with
the property construct to provide a mechanism by which aspects can exchange
information with each other, and control the weaver at shared join points. This
extension is applicable to a wide range of aspect-oriented programming
languages that offer an explicit join point metadata type. 

By using the extended join point type and a dedicated property, we integrated
the previously proposed constraint-based approach in the AOP languages
AspectJ and Compose*.

6.2 Overview of the Introduced Language Constructs
This thesis evaluates the software composition mechanisms of current aspect-
oriented languages, and proposes novel extensions to them so that programs
written in these languages exhibit better quality.
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In Chapter 3, we propose an expressive pointcut language founded on a
generic, predicate-based language that can designate structural join points
based on annotations in Compose*, which is indicated by (1) in Figure 6.1. In
addition, we extend the matching expression of Compose* with the ability of
referring to annotations. In this way, messages, as behavioral join points, can
also be designated based on annotations attached to the corresponding shadow
points. 

In Chapter 3 and 4, we propose a language construct for the introduction of
annotations in Compose*. To designate structural join points for the introduc-
tions, we apply the fully expressive pointcut language of Compose*. As a
result, annotations can be introduced to program elements based on the exist-
ence of other annotations. We call this technique derivation of annotations. By
supporting the derivation of annotations, dependent annotations (and complete
annotation hierarchies) can be automatically superimposed.

In Chapter 4, we propose a new advice-pointcut binding specification
construct, indicated by (2) in Figure 6.1. This construct is a specialization of
the separate binding specification concept of the reference model. In the new
binding construct, we apply queries to indirectly designate filtermodules (cf.
aspects) for superimposition, based on their properties. The new binding spec-
ification uniformly presents the superimposition of various subjects, such as
filtermodules and annotations; hence, we call this feature weaving subject
polymorphism.

In Chapter 5, we propose a constraint specification language to specify the
composition of advices at shared join points. Its ordering constraints corre-
spond to the advice ordering concept of the reference model, indicated by (5)
in Figure 6.1. Its behavioral and structural constraints, indicated by (6) and (7)
in Figure 6.1, correspond to the customizable advice composition and respec-
tively, aspect-aspect composition concepts of the reference model. 

We also propose to extend the concept of join point type with properties, indi-
cated by (3) in Figure 6.1. Properties provide a parameter passing mechanism
between aspects: properties can be written into a join point instance and read
by aspect instances to exchange information among them. 
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Figure 6.1 illustrates the relationships between the proposed language
constructs and the concepts of the reference model

Figure 6.1 The relationships between the proposed language constructs and 
the concepts of the reference model

6.3 Future Research
As we discussed in Chapter 2, a construct of a particular aspect-oriented
language may fulfil the role of more than one language concepts of the refer-
ence model and vice versa. That is, there is often no one-to-one mapping
between the constructs of a language and the reference model. One of our
future works is to provide mappings to the reference model from various
aspect-oriented languages, besides the ones that we provided in Chapter 2. The
motivation behind this work is to make observations on (1) how a concept of
the reference model is realized through the constructs of a particular language,
and (2) how a construct of a particular language can realize multiple concepts
of the reference model. This information could help us to reflect on the design
of aspect-oriented languages, and understand how certain language constructs
may influence positively or negatively the quality of aspect-oriented program-
ming languages.

Regarding the use of annotations, disciplined programming is required to keep
the correct design information associated with the appropriate program
elements. We believe this problem can be improved through the language
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CHAPTER 6 CONCLUSIONS
constructs that we proposed in Chapter 4. However, it is unavoidable that
certain semantic properties have to be specified by the software engineer. We
have illustrated how superimposition and derivation can be used to attach
semantic properties. In addition, we plan two ways to address this issue: (1) by
investigating design-level support and the automatic derivation of annotation
specifications from stereotypes in UML diagrams; (2) by searching for tech-
niques (e.g. control and data flow analysis) that can automatically derive
certain common annotations.

Other potential future work is about (a) the ability to apply the notion of seman-
tic composition to more composition techniques than the superimposition
mechanism (that was the main subject of study of Chapter 2), or (b) the exploi-
tation of semantic composition for the purpose of modelling product lines and
variability management.

In Chapter 5, we presented a composition model for composing aspects at
shared join points. One of our future works is to investigate interactions
between aspects that are not necessarily woven at the same join points, and to
design models for their composition. To realize certain interactions between
aspects, we extended the concept of join points types with the property
construct. We are interested in the further application possibilities of the prop-
erty construct at shared join points to implement more complex interactions,
and to detect possible interaction patterns between aspects.
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Appendix A

The Grammar of Compose*

This appendix describes the grammar of Compose*. Standard EBNF ISO/IEC
14977 is used to specify the grammar. Each rule of the grammar defines a non-
terminal symbol. The defining symbol in a rule is "::=". In the right hand-side
of a rule, the following elements of the EBNF can be used:

• [ ] : specifies an elements that is optional
• ( )* : specifies an element that can be repeated zero or more times
• ( )+ : specifies an element that can be repeated one or more times
• ’ ’ : specifies a string literal
• a | b : specifies an alternative to a rule
• a‐LIST: this expression is always substituted with a (’,’ a)*

A.1 Concern Definition

Concern ::= ʹconcernʹ ConcernName 
[ʹ(ʹ FormalParameters ʹ)ʹ] 
[ʹinʹ PackageReference] ʹ{ʹ
(FilterModule)*
[SuperImposition]
[Implementation]
ʹ}ʹ

FormalParameters  ::= FormalParameterDefinition‐SEQ
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FormalParameterDefinition  ::= Identifier‐LIST ʹ:ʹ Type

A.2 Filtermodule Definition

FilterModule  ::= ʹfiltermoduleʹ FilterModuleName ʹ{ʹ
[Internals]
[Externals]
[Conditions]
[MethodDeclarations]
[InputFilters]
[OutputFilters]
ʹ}ʹ

Internals  ::= ʹinternalsʹ (Identifier‐LIST ʹ:ʹ Type ʹ;ʹ)*

Externals  ::= ʹexternalsʹ (Identifier‐LIST ʹ:ʹ Type 
[ʹ=ʹ InitializationExpression] ʹ;ʹ)*

InitializationExpression  ::= FilterModuleElementReference

Conditions  ::= ʹconditionsʹ (ConditionDecl)*

ConditionDecl  ::= ConditionName ʹ:ʹ ConditionReference ʹ;ʹ

MethodDeclarations  ::= ʹmethodsʹ MethodDeclaration*

MethodDeclaration  ::= MethodName ʹ(ʹ 
[FormalParameterTypeDef‐SEQ] ʹ)ʹ
[ʹ:ʹ ReturnType] ʹ;ʹ

FormalParameterTypeDef  ::= [Identifier‐LIST ʹ:ʹ] Type

InputFilters  ::= ʹinputfiltersʹ GeneralFilterSet

OutputFilters  ::= ʹoutputfiltersʹ GeneralFilterSet
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FILTER DEFINITIONS
A.3 Filter Definitions

GeneralFilterSet  ::= GeneralFilter (
FilterCompositionOperator 
GeneralFilter)*

FilterCompositionOperator  ::=  ʹ;ʹ

GeneralFilter  ::= FilterName ʹ:ʹ FilterType 
[ʹ(ʹ ActualFilterParameters ʹ)ʹ] ʹ=ʹ 
ʹ{ʹ [FilterElements] ʹ}ʹ

ActualFilterParameters  ::= Value‐LIST

FilterElements  ::= FilterElement 
(ElemCompositionOperator 
FilterElement)*

ElemCompositionOperator  ::= ʹ,ʹ

FilterElement  ::= [ConditionExpression 
ConditionOperator] 
MessagePatternSet

ConditionOperator  ::= ʹ=>ʹ | ʹ~>ʹ

ConditionExpression  ::= ConditionLiteral | ʹ!ʹ ConditionLiteral | 
ʹ(ʹ ConditionExpression (ʹ|ʹ | ʹ&ʹ) 
ConditionExpression ʹ)ʹ

ConditionLiteral  ::= ConditionName| ʹTrueʹ | ʹFalseʹ

MessagePatternSet  ::= ʹ{ʹ MessagePattern‐LIST ʹ}ʹ | 
MessagePattern

MessagePattern  ::= SignatureMatching SubstitutionPart |
  NameMatching SubstitutionPart | 

DefaultMatchAndSubstitute

SignatureMatching  ::= ʹ<ʹ MatchPattern ʹ>ʹ
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NameMatching  ::= ʹ[ʹ MatchPattern ʹ]ʹ | 
 Quote MatchPattern Quote

DefaultMatchAndSubstitute  ::= MatchPattern

SubstitutionPart ::= MatchPattern

MatchPattern  ::= [Target ʹ.ʹ] Selector

Target  ::= Identifier | ʹinnerʹ | ʹ*ʹ

Selector  ::= MethodName [ʹ(ʹ [Type‐SEQ] ʹ)ʹ] | ʹ*ʹ

A.4 Superimposition

SuperImposition  ::= ʹsuperimpositionʹ ʹ{ʹ [SelectorDefinition]
[ConditionBinding]
[MethodBinding]
[FilterModuleBinding]
[AnnotationBinding]
[Constraints]
ʹ}ʹ

A.5 Selector definitions

SelectorDefinition  ::= ʹselectorsʹ ( SelectorName ʹ=ʹ ʹ{ʹ 
  VarName ʹ|ʹ

PrologBody ʹ};ʹ )* 

VarName  ::= UpperCase (LowerCase)*

PrologBody  ::= PrologFun‐LIST

PrologFun  ::=  ConstString [ʹ(ʹ [Arg‐LIST] ʹ)ʹ ]

Arg ::= PrologFun | PrologVar | PrologList | 
ConstNum

PrologVar  ::=  ʹ_ʹ | VarName
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COMMON BINDING INFORMATION
PrologList  ::= ʹ[ʹ ʹ]ʹ | ʹ[ʹ ListElems ʹ]ʹ

ListElems  ::= [Arg‐LIST] [ ʹ|ʹ (PrologList | PrologVar) ]

A.6 Common Binding Information

CommonBindingPart  ::= Selector WeaveOperation

Selector  ::= ConcernElementReference

WeaveOperation  ::= ʹ<‐ʹ

A.7 Condition Bindings

ConditionBinding  ::= ʹconditionsʹ (CommonBindingPart 
ConditionNameSet ʹ;ʹ)*

ConditionNameSet  ::= ʹ{ʹ ConditionName‐LIST ʹ}ʹ | 
ConditionName‐LIST

ConditionName  ::= FilterModuleElementReference | 
FilterModuleElementReferenceStar

A.8 Method Bindings

MethodBinding  ::= ʹmethodsʹ (CommonBindingPart 
MethodNameSet ʹ;ʹ)*

MethodNameSet  ::= ʹ{ʹ MethodName‐LIST ʹ}ʹ | 
MethodName‐LIST

MethodName  ::= FilterModuleElementReference 
[ʹ(ʹ [Type‐LIST] ʹ)ʹ] | 
FilterModuleElementReferenceStar
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A.9 Filtermodule Bindings

FilterModuleBinding  ::= ʹfiltermodulesʹ (CommonBindingPart 
FilterModuleSet ʹ;ʹ)*

FilterModuleSet  ::= ʹ{ʹ ConcernElementReference‐LIST ʹ}ʹ |
 ConcernElementReference‐LIST

A.10 Annotation Bindings

AnnotationBinding  ::=  ʹannotationsʹ SelectorRef ʹ‐>ʹ 
AnnotationSet ʹ;ʹ

AnnotationSet  ::= concernReference‐LIST | 
ʹ{ʹ concernReference‐LIST ʹ}ʹ

A.11 Constraints

Constraints  ::= ʹconstraintsʹ (CommonBindingPart 
 ConstraintElementSet ʹ;ʹ)*

ConstraintStatementSet  ::= ʹ{ʹ ConstraintStatement‐LIST ʹ}ʹ |
  ConstraintStatement‐LIST

ConstraintStatement  :: = OrderingStatement |
 ConditionalStatement | 
 StructuralStatement

OrderingStatement  ::= ʹ{ʹ OpenEndedStatement‐LIST ́ }ʹ Identifier 
 {ʹ OpenEndedStatement‐LIST ʹ}ʹ |
 OpenEndedStatement Identifier 
 OpenEndedStatement

OpenEndedStatement  ::=  (ʹ%ʹ|ʹ#ʹ) FilterModuleReference

ConditionalStatement  ::= Expression Identifier 
FilterModuleReference
[ʹwithʹ (TRUE|FALSE|VOID)]
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IMPLEMENTATION
PrimitiveElement ::= OpenEndedStatement |
’(’ Expression ’)’

Expression  ::=  NegationExpression
 ((ʹandʹ|ʹorʹ) NegationExpression )*

NegationExpression  ::= (ʹnotʹ)*  PrimitiveElement 

StructuralStatement  ::= ʹ{ʹ FilterModuleReference‐LIST ʹ}ʹ 
                                                               Identifier 

 {ʹ FilterModuleReference‐LIST ʹ}ʹ |
FilterModuleReference  Identifier 
FilterModuleReference

A.12 Implementation

Implementation  ::= ʹimplementationʹ 
                                                                    ImplementationDefinition

ImplementationDefinition  ::= ʹbyʹ ClassName ʹ;ʹ | ʹinʹ 
                                                              SourceLanguage ʹbyʹ 

ClassName ʹasʹ FileName ʹ{ʹ Source ʹ}ʹ

Source  ::= (?)*

A.13 References

ConcernElementReference  ::= [ConcernReference ʹ::ʹ] Identifier

SourceLanguage  ::= Identifier 

ClassName  ::= ConcernReference

ConcernName  ::=  Identifier

ConcernReference  ::= [PackageReference ʹ.ʹ] ConcernName

ConditionName  ::= Identifier
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ConditionReference  ::= FilterModuleElementReference | 
ConstructorReference

ConstructorReference  ::= ConcernReference ʹ()ʹ

FilterModuleElementReference ::= [[ConcernReference ʹ::ʹ] 
     FilterModuleName ʹ:ʹ] Identifier

FilterModuleElementReferenceStar::= [[ConcernReference ʹ::ʹ] 
           FilterModuleName ʹ:ʹ] ʹ*ʹ

FilterModuleName  ::= Identifier

FilterModuleRefence  ::= ConcernElementReference

FilterName  ::= Identifier

FilterType ::= ConcernReference

MethodName  ::= Identifier

PackageReference  ::= (PackageName ʹ.ʹ)* PackageName

PackageName  ::= Identifier

ReturnType  ::= ConcernReference

SelectorName  ::= Identifier

SelectorRef  ::= ConcernElementReference

Type  ::= ConcernReference

Value  ::= Identifier | Number

A.14 Commonly used elements and definitions

ʺElem‐LISTʺ  ::= Elem ( ʹ,ʹ Elem)*
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A TEMPLATE FOR SPECIFYING CONCERNS
ʺElem‐SEQʺ  ::= Elem ( ʹ;ʹ Elem)*

Identifier ::= (Letter | Special) (Letter | Digit | Special)*

ConstString ::= LowerCase (Letter|Digit|Special)* | 
ʹʹʹ (?)* ʹʹʹ

ConstNum ::= [ʹ‐ʹ] (Digit)+ [ ʹ.ʹ (Digit)+ ]

Number ::= (Digit)+

FileName ::= Quote (Letter | Digit | Special | Dot)* 
Quote

Letter ::= LowerCase | UpperCase

LowerCase ::=  ʹaʹ..ʹzʹ

UpperCase ::=  ʹAʹ..ʹZʹ

Special ::=  ʹ_ʹ

Quote ::=  ʹʹʹ

Digit ::=  ʹ0ʹ..ʹ9ʹ

A.15 A Template for Specifying Concerns

concern MyConcern ;
{ // you may repeat several filtermodule declarations 

filtermodule MyFilterModule {
internals  // declare used internal (per instance) objects
externals  // declare used external (global) objects
conditions  // declare used conditions here
methods  // declare used methods here
inputfilters  // define the inputfilters (composed by ʹ;ʹ)
outputfilters  // define the outputfilters

}
superimposition {
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selectors  // selects classnames with queries
conditions  // bind the listed conditions to the context 

    specified by selectors
methods  // bind the listed methods to the context 

    specified by selectors
filtermodules  // superimpose the list filtermodules at the 

    locations
annotations  // bind the listed annotations to the context 

    specified by selectors
constraints  // ordering of the filters

}
implementation by ʹassemblyname.dllʹ;

}
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Appendix B

The Selector Language of

Compose*

This appendix describes the predicates that can be used in the selector construct
of Compose* presented in Chapter 3 and 4. The meaning of a predicate, if it is
not intuitive, is described after a column symbol.

B.1  (.NET) Language units

• isNamespace(Namespace).
• isInterface(Interface).
• isClass(Class).
• isAnnotation(Annotation).
• isField(Field).
• isMethod(Method).
• isParameter(Parameter).
• isType(Type) :- isInterface(Type).
• isType(Type) :- isClass(Type).

• isConcern(Concern).
• isFilterModule(FilterModule).
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B.2 Properties of program elements

• isNamespaceWithName(Interface, InterfaceName).

• isInterfaceWithName(Interface, InterfaceName).
• isInterfaceWithAttribute(Interface, AttributeName).

• isClassWithName(Class, ClassName).
• isClassWithAttribute(Class, ClassAttribute).

• isAnnotationWithName(Annotation, AnnotationName).
• isAnnotationWithAttribute(Annotation, AnnotationAttrib-

ute).

• isFieldWithName(Field, FieldName).
• isFieldWithAttribute(Field, FieldAttribute).

• isMethodWithName(Method, MethodName).
• isMethodWithAttribute(Method, MethodAttribute).

• isParameterWithName(Parameter, ParameterName).
• isParameterWithAttribute(Parameter, ParameterAttribute).

• isTypeWithName(Type, TypeName) :- 
  isClassWithName(Type, TypeName).

• isTypeWithName(Type, TypeName) :- 
  isInterfaceWithName(Type, TypeName).

• isTypeWithAttribute(Type, TypeAttribute) :-
  isClassWithAttribute(Type, TypeAttribute).

• isTypeWithAttribute(Type, TypeAttribute) :- 
  isInterfaceWithAttribute(Type, TypeAttribute).

• isConcernWithName(Concern, ConcernName).
• isFilterModuleWithName(FilterModule, FilterModuleName).
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B.3 Relations between program elements

B.3.1 Namespace relations

• namespaceHasInterface(Namespace, Interface).
: Namespace contains Interface.

• namespaceHasClass(Namespace, Class).
: Namespace contains Class.

• namespaceHasType(Namespace, Type).
: Namespace contains Type.

• isParentNamespace(ParentNS, ChildNS).
: ParentNS is the parent namespace of ChildNS.

B.3.2 Type relations

• typeHasAnnotation(Type, Annotation).
: Type has Annotation attached.

• typeHasAnnotationWithName(Type, Annotation).
: Type has an annotation with the specified name
attached.

• isSuperType(SuperType, SubType).
: SubType directly inherits from SuperType.

• typeHasMethod(Type, Method).
: declaration Type contains Method.

B.3.3 Class relations

• classHasAnnotation(Class, Annotation).
: Class has Annotation attached.

• classHasAnnotationWithName(Class, AnnotName).
: Class has an annotation with the specified name
attached.

• classHasMethod(Class, Method).: the Class has Method.
• classHasField(Class, Field).: the Class has Field.
• isSuperClass(SuperClass, SubClass).

: the SubClass directly inherits from SuperClass.
• classImplementsInterface(Class, Interface).

: Class implements Interface.
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• inherits(Parent, Child).
: Child is in the inheritance tree of Parent (e.g. any
subclass of Parent). 

• inheritsOrSelf(Parent, Child).
: Child is in the inheritance tree of Parent or Parent ==
Child (e.g. Parent and all subclasses). 

B.3.4 Interface relations

• isSuperInterface(SuperInterface, SubInterface).
: the SubInterface directly inherits from SuperInter-
face.

• interfaceHasAnnotation(Interface, Annotation).
: the Interface has Annotation attached.

• interfaceHasAnnotationWithName(Interface, AnnotName).
: the Interface has an annotation with the specified name
attached.

• interfaceHasMethod(Interface, Method).
: the Interface declaration contains Method.

B.3.5 Method relations

• methodReturnClass(Method, Class).
: the Method returns a result of type Class.

• methodReturnInterface(Method, Interface).
: the Method returns a result of type Interface.

• methodReturnType(Method, Type).
: the Method returns a result of type Type.

• methodHasParameter(Method, Parameter).
: the Method has the specified Parameter.

• methodHasAnnotation(Method, Annotation).
: the Method has Annotation attached.

• methodHasAnnotationWithName(Method, AnnotName).
: the Method has an annotation with the specified name
attached.

Method parameters are not ordered, but can be selected by their name. It is
(currently) not possible to select parameters by order (e.g. the first argument of
a method).
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B.3.6 Field relations

• fieldClass(Field, Class).
: the class (type) of a field - not to be confused with
the Type that the field is a part of (classHasField).

• fieldInterface(Field, Interface)
: the interface (type) of a field.

• fieldType(Field, Type): the type of a field
• fieldHasAnnotation(Field, Annotation).

: the Field has Annotation attached.
• fieldHasAnnotationWithName(Field, AnnotName).

: the Field has an annotation with the specified name
attached.

B.3.7 Parameter relations

• parameterClass(Parameter, Class).
: the class (type) of a parameter.

• parameterInterface(Parameter, Interface).
: the interface (type) of a parameter.

• parameterType(Parameter, Type): the type of a parameter.
• parameterHasAnnotation(Parameter, Annotation).

: the Parameter has Annotation attached.
• parameterHasAnnotationWithName(Parameter, AnnotName).

: the Parameter has an annotation with the specified name
attached.

B.3.8 Concern and Filtermodule relations

• concernHasAnnotation(Concern, Annotation).
: Concern has Annotation attached.

• concernHasAnnotationWithName(Concern, AnnotName).
: Concern has an annotation with the specified name
attached.

• filterModuleHasAnnotation(FilterModule, Annotation).
: FilterModule has Annotation attached.

• filterModuleHasAnnotationWithName(FilterModule, Annot-
Name).
: FilterModule has an annotation with the specified name
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attached.

• concernHasFilterModule(Concern, FilterModule).
: Concern has FilterModule.
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Appendix C

The Architecture of

Compose*

This appendix gives a brief introduction to the architecture of Compose*. An
overview of the architecture is presented in Figure C.1.

C.1 The Architecture Layers of Compose*

The architecture of Compose* consists of four distinguishable parts:

• Visual Studio Plug-in The Compose* compilation process is trig-
gered by a Visual Studio.NET plug-in in the Visual Studio.NET envi-
ronment.

• Compose* Compile-Time This layer consists of modules that take
care of the compilation of Compose* projects. The compile-time layer
of Compose* is responsible for the compilation of the sources that
contain language independent concern specifications. All the informa-
tion gathered and analyzed by these modules is stored into a central
data store called Repository. 

• Compose* Adaptation The adaptation layer is responsible for the
generation of artefacts that act as input to the Run-Time layer. The
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generated artefacts are platform-specific. Each platform requires the
implementation of its corresponding adaptation layer.

• Compose* Run-Time The run-time layer is an interpreter that is
responsible for the execution of compiled Compose* projects.

These four layers, presented in Figure C.1, perform the compilation and execu-
tion of a Compose* project. In the following sections, we give a description
about the functionality of each layer.

C.1.1 Visual Studio Plug-in

This layer is presented by the ’IDE’ block in Figure C.1. The plug-in is respon-
sible for the configuration of all components involved in the actual compila-
tion; however, it performs several activities before it starts the actual compila-
tion and runtime processes. In this layer, it is determined what files are part of
the project, what language they are written in and which compiler should be
used to compile them. The phase of compilation is initiated from this plug-in
as well.

C.1.2 Compose* Compile-Time

This layer is presented by the ’Compiler’ block in Figure C.1. The Compile-
Time layer consists of several modules that are responsible for extracting and
processing information from the given concern sources, and storing them into
the repository. The most important activities in this layer are the following:
parsing the concern sources, resolving references, consistency checking of
filtermodules. We explicitly mention three modules of this layer, illustrated in
Figure C.1, as they are the realization of the language concepts that were
discussed in Chapter 3 and 4.

• SANE (Superimposition ANalysis Engine) The superimposition
analysis engine calculates, for each concern specification, the join
points where the filtermodules should be imposed. This information is
attached to all the imposed objects or concerns in the repository.

• LOLA (LOgic LAnguage) This module is responsible for interpret-
ing the superimposition selectors. Selectors are expressed by a logic
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language and consist of (possibly complex) combinations of con-
straints on program element properties and relations. Language mech-
anisms that were introduced in Chapter 3 and 4 are realized in the
SANE and LOLA modules. 

• FILTH (FILTer composition and cHecking) SANE and LOLA
determines the structural join points where the filtermodules are
imposed on based on the given selectors of a project. FILTH is respon-
sible for processing the constraints specifications, e.g. providing the
possible orderings of filtermodules that superimposed on the same join
point. The language mechanisms that were introduced in Chapter 5 are
realized in FILTH.

C.1.3 Compose* Adaptation

This layer is presented by the ’Adaptation Layer’ block in Figure C.1. This
layer consists of modules that are responsible for extracting and processing
information from any input file (e.g. a concern implemented in a concrete
programming language, a .NET assembly, etc.) that is platform-specific. 

Figure C.1 An overview of the Compose* architecture
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The most important activities in this layer are the following: compilation of
language dependent concerns (’native’ compiler block), extracting meta-infor-
mation from target code (program harverster block), generation and manipula-
tion of the target code, for instance, the hook instrumentation for the corre-
sponding join points in the byte code (program manipulation and code genera-
tion blocks). This layer can also generate standalone executable modules that
do not require an additional interpreter for the execution of filters.

C.1.4 Compose* Runtime

This layer is presented by the ’Runtime (filter interpreter)’ block in Figure C.1.
The responsibility of this layer is to provide runtime execution of Composition
Filters. It creates an ObjectManager for each object as needed, and runs the
appropriate filter code with it whenever a join point is reached. The execution
of the interpreter is triggered by the hooks that were inserted into the target
code during the hook instrumentation in the adaptation layer.
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Samenvatting

Aspect-georiënteerd programmeren is een aanpak van software ontwikkeling
welke nieuwe mogelijkheden biedt voor het scheiden van verschillende onder-
werpen ('concerns'). Aspect-georiënteerde talen bieden abstracties aan voor de
implementatie van onderwerpen waarvan de modularisatie niet kan worden
bereikt met traditionele programmeertalen. Dergelijke onderwerpen worden
doorgaans aangeduid als 'crosscutting concerns'. Het is algemeen geaccepteerd
dat het op de juiste manier scheiden van verschillende concerns positieve
effecten heeft op kwaliteitseigenschappen zoals hergebruik en aanpasbaarheid.
De in software van elkaar gescheiden concerns moeten vervolgens op een
zodanige manier worden samengesteld dat de totale software op coherente
wijze aan de programma-eisen voldoet. We noemen taalmechanismes die gesc-
heiden concerns samenstellen 'compositie-mechanismes'. Dit proefschrift eval-
ueert de software compositie-mechanismes van de huidige aspect-georiën-
teerde talen vanuit het perspectief van software kwaliteitsfactoren zoals evol-
ueerbaarheid, begrijpelijkheid, voorspelbaarheid en aanpasbaarheid. Op basis
van deze studie worden in het proefschrift nieuwe uitbreidingen op de huidige
aspect-georiënteerde talen voorgesteld waardoor programmas indien ze in deze
talen worden geprogrammeerd, van hogere kwaliteit zijn.

Er zijn een aanzienlijk aantal aspect-georiënteerde talen geïntroduceerd ten
behoeve van het modulariseren van crosscutting concerns. Vanzelfsprekend
hebben deze talen zowel gemeenschappelijke alsmede onderscheidende eigen-
schappen. In dit proefschrift wordt een referentiemodel voorgesteld dat tot doel
heeft de gemeenschappelijke en onderscheidende concepten van aspect-
georiënteerde talen te representeren. Dit referentiemodel vormt een basis om
de belangrijke karakteristieken van de state-of-the-art AOP talen te begrijpen
en helpt ons om verschillende AOP talen te vergelijken. Daarnaast laat het
referentiemodel zien welke zaken moeten worden bekeken bij het ontwikkelen
van een nieuwe aspect-georiënteerde taal.

In dit proefschrift worden de vier voornaamste aspect-georiënteerde
concepten, te weten 'join point', 'pointcut', 'advice' en 'aspect', elk geanalyseerd,
resulterend in de identificatie van een aantal potentiele problemen in diverse
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AOP talen. Op basis van deze analyse, worden uitbreidingen van de bestaande
concepten, dan wel nieuwe concepten, geintroduceerd die de problemen
addresseren.

In de huidige aspect-georienteerde talen selecteert een pointcut een aantal join
points in een programma op basis van lexicale informatie zoals de namen van
programmaelementen. Echter, dit reduceert de aanpasbaarheid van software,
aangezien er teveel informatie wordt gebruikt in de specificatie welke hard-
coded, en vaak implementatie-specifiek is. We stellen dat dit probleem kan
worden beperkt door aan programmaelementen te refereren door middel van
hun semantische eigenschappen. Een semantische eigenschap beschrijft
bijvoorbeeld het gedrag van een programmaelement, of het bedoelde effect.
We formuleren een aantal eisen voor de juiste toepassing van semantische
eigenschappen in aspect-georiënteerd programmeren. We bespreken hoe
semantische eigenschappen kunnen worden gebruikt voor de toepassing van
aspecten in een programma, en hoe semantische eigenschappen kunnen
worden toegevoegd ('geïntroduceerd') aan programmelementen. Hiertoe stel-
len we taalconstructies voor welke 'semantische compositie' mogelijk maken:
de compositie van aspecten met die elementen van een ('base') programma, die
aan bepaalde semantische eigenschappen voldoen.

De huidige advice-pointcut binding constructies van AOP talen bevatten expl-
iciete afhankelijkheden naar advices en aspecten. Het gevolg hiervan is dat
aspect specificaties minder evolueerbaar zijn en meer onderhoudsintensief zijn
tijdens de ontwikkeling van een systeem. We tonen aan dat dit kan worden
geaddresseerd door referenties naar advices and aspecten associatief te maken,
in plaats van expliciete afhankelijkheden. Hiertoe stellen we voor om in
advice-pointcut bindings de expliciete referenties te vervangen door een selec-
tietaal welke het mogelijk maakt om te refereren middels de syntactische en
semantische eigenschappen van de te selecteren elementen (dwz. Advices en
aspecten). We laten ook zien hoe semantische eigenschappen kunnen worden
gebruikt om herbruikbare en aanpasbare aspect abstracties te construeren.

Aspect-georiënteerde talen maken het mogelijk om gedrag -in de vorm van
advice- toe te voegen aan een gespecificeerde verzameling joinpoints. Het is
mogelijk dat niet slechts één, maar meerdere advices aan hetzelfde join point
worden toegevoegd. Zulke "shared join points" kunnen een aantal problemen
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veroorzaken, zoals het bepalen van de executievolgorde en het uitdrukken van
afhankelijkheden tussen aspecten. We presenteren een gedetailleerde analyse
van het probleem, en identificeren een aantal eisen waaraan mechanismen voor
de compositie van aspecten op shared join points moeten voldoen. We intro-
duceren een algemeen, declaratief model voor het definiëren van constraints op
de mogelijke composities van aspecten (op shared join points). Door gebruik
te maken van een uitbreiding op het gangbare join point concept, kunnen we
laten zien hoe ons voorstel kan worden toegepast in concrete aspect-georiën-
teerde programmeertalen.

Het proefschrift laat tevens zien hoe de voorgestelde taalconstructies kunnen
worden geïntegreerd in de aspect-georiënteerde taal Compose*. Teneinde de
voorgestelde constructies te evalueren, wordt een kwalitatieve analyse met
betrekking tot diverse software engineering eigenschappen, zoals evolueer-
baarheid, modulariteit, voorspelbaarheid en aanpasbaarheid, uitgevoerd.
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